hkivancoral's picture
End of training
3939851
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_beit_base_rms_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7133333333333334

smids_1x_beit_base_rms_0001_fold3

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7846
  • Accuracy: 0.7133

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1199 1.0 75 1.1044 0.325
1.1759 2.0 150 1.1239 0.47
1.1465 3.0 225 0.9168 0.5
0.8955 4.0 300 0.8917 0.5017
0.8948 5.0 375 0.8301 0.5533
0.9774 6.0 450 0.8272 0.5467
0.8001 7.0 525 0.8058 0.5567
0.7633 8.0 600 0.8140 0.545
0.7814 9.0 675 0.7815 0.5733
0.8175 10.0 750 0.7839 0.5633
0.7605 11.0 825 0.7664 0.615
0.762 12.0 900 0.7781 0.59
0.6797 13.0 975 0.7875 0.575
0.7699 14.0 1050 0.7772 0.6117
0.6167 15.0 1125 0.8129 0.585
0.7106 16.0 1200 0.7392 0.6633
0.7174 17.0 1275 0.7176 0.6717
0.704 18.0 1350 0.7772 0.63
0.6617 19.0 1425 0.7359 0.65
0.6722 20.0 1500 0.7009 0.6783
0.676 21.0 1575 0.6946 0.6667
0.6441 22.0 1650 0.7089 0.6917
0.6565 23.0 1725 0.7160 0.665
0.6009 24.0 1800 0.6902 0.6783
0.6592 25.0 1875 0.7159 0.665
0.6628 26.0 1950 0.7741 0.6233
0.6044 27.0 2025 0.7147 0.66
0.585 28.0 2100 0.6827 0.69
0.5831 29.0 2175 0.6975 0.6833
0.6301 30.0 2250 0.6815 0.6633
0.6457 31.0 2325 0.6813 0.6817
0.6492 32.0 2400 0.6894 0.6783
0.5418 33.0 2475 0.7461 0.6783
0.5925 34.0 2550 0.6773 0.6933
0.5913 35.0 2625 0.6656 0.7083
0.5761 36.0 2700 0.6491 0.7133
0.528 37.0 2775 0.6784 0.7
0.5718 38.0 2850 0.7007 0.6783
0.5083 39.0 2925 0.6815 0.7
0.5069 40.0 3000 0.6638 0.71
0.4838 41.0 3075 0.6813 0.7167
0.5071 42.0 3150 0.6709 0.7183
0.5091 43.0 3225 0.6746 0.7167
0.4355 44.0 3300 0.7138 0.71
0.4287 45.0 3375 0.7080 0.7133
0.3954 46.0 3450 0.7468 0.7
0.3389 47.0 3525 0.7428 0.7183
0.3613 48.0 3600 0.7469 0.725
0.388 49.0 3675 0.7685 0.7167
0.2972 50.0 3750 0.7846 0.7133

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0