--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_1x_beit_base_rms_0001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7133333333333334 --- # smids_1x_beit_base_rms_0001_fold3 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7846 - Accuracy: 0.7133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1199 | 1.0 | 75 | 1.1044 | 0.325 | | 1.1759 | 2.0 | 150 | 1.1239 | 0.47 | | 1.1465 | 3.0 | 225 | 0.9168 | 0.5 | | 0.8955 | 4.0 | 300 | 0.8917 | 0.5017 | | 0.8948 | 5.0 | 375 | 0.8301 | 0.5533 | | 0.9774 | 6.0 | 450 | 0.8272 | 0.5467 | | 0.8001 | 7.0 | 525 | 0.8058 | 0.5567 | | 0.7633 | 8.0 | 600 | 0.8140 | 0.545 | | 0.7814 | 9.0 | 675 | 0.7815 | 0.5733 | | 0.8175 | 10.0 | 750 | 0.7839 | 0.5633 | | 0.7605 | 11.0 | 825 | 0.7664 | 0.615 | | 0.762 | 12.0 | 900 | 0.7781 | 0.59 | | 0.6797 | 13.0 | 975 | 0.7875 | 0.575 | | 0.7699 | 14.0 | 1050 | 0.7772 | 0.6117 | | 0.6167 | 15.0 | 1125 | 0.8129 | 0.585 | | 0.7106 | 16.0 | 1200 | 0.7392 | 0.6633 | | 0.7174 | 17.0 | 1275 | 0.7176 | 0.6717 | | 0.704 | 18.0 | 1350 | 0.7772 | 0.63 | | 0.6617 | 19.0 | 1425 | 0.7359 | 0.65 | | 0.6722 | 20.0 | 1500 | 0.7009 | 0.6783 | | 0.676 | 21.0 | 1575 | 0.6946 | 0.6667 | | 0.6441 | 22.0 | 1650 | 0.7089 | 0.6917 | | 0.6565 | 23.0 | 1725 | 0.7160 | 0.665 | | 0.6009 | 24.0 | 1800 | 0.6902 | 0.6783 | | 0.6592 | 25.0 | 1875 | 0.7159 | 0.665 | | 0.6628 | 26.0 | 1950 | 0.7741 | 0.6233 | | 0.6044 | 27.0 | 2025 | 0.7147 | 0.66 | | 0.585 | 28.0 | 2100 | 0.6827 | 0.69 | | 0.5831 | 29.0 | 2175 | 0.6975 | 0.6833 | | 0.6301 | 30.0 | 2250 | 0.6815 | 0.6633 | | 0.6457 | 31.0 | 2325 | 0.6813 | 0.6817 | | 0.6492 | 32.0 | 2400 | 0.6894 | 0.6783 | | 0.5418 | 33.0 | 2475 | 0.7461 | 0.6783 | | 0.5925 | 34.0 | 2550 | 0.6773 | 0.6933 | | 0.5913 | 35.0 | 2625 | 0.6656 | 0.7083 | | 0.5761 | 36.0 | 2700 | 0.6491 | 0.7133 | | 0.528 | 37.0 | 2775 | 0.6784 | 0.7 | | 0.5718 | 38.0 | 2850 | 0.7007 | 0.6783 | | 0.5083 | 39.0 | 2925 | 0.6815 | 0.7 | | 0.5069 | 40.0 | 3000 | 0.6638 | 0.71 | | 0.4838 | 41.0 | 3075 | 0.6813 | 0.7167 | | 0.5071 | 42.0 | 3150 | 0.6709 | 0.7183 | | 0.5091 | 43.0 | 3225 | 0.6746 | 0.7167 | | 0.4355 | 44.0 | 3300 | 0.7138 | 0.71 | | 0.4287 | 45.0 | 3375 | 0.7080 | 0.7133 | | 0.3954 | 46.0 | 3450 | 0.7468 | 0.7 | | 0.3389 | 47.0 | 3525 | 0.7428 | 0.7183 | | 0.3613 | 48.0 | 3600 | 0.7469 | 0.725 | | 0.388 | 49.0 | 3675 | 0.7685 | 0.7167 | | 0.2972 | 50.0 | 3750 | 0.7846 | 0.7133 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0