hkivancoral's picture
End of training
2f101da
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_beit_base_rms_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8964941569282137

smids_1x_beit_base_rms_00001_fold1

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7081
  • Accuracy: 0.8965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3415 1.0 76 0.3600 0.8531
0.1821 2.0 152 0.2813 0.8865
0.1106 3.0 228 0.2915 0.8965
0.0837 4.0 304 0.4355 0.8748
0.0461 5.0 380 0.3524 0.8831
0.0314 6.0 456 0.3471 0.9065
0.052 7.0 532 0.3906 0.9032
0.0094 8.0 608 0.4902 0.8998
0.0397 9.0 684 0.5074 0.8848
0.0068 10.0 760 0.5396 0.8965
0.0009 11.0 836 0.4910 0.9032
0.0007 12.0 912 0.5441 0.8982
0.0176 13.0 988 0.5729 0.8965
0.008 14.0 1064 0.5831 0.8965
0.0023 15.0 1140 0.6581 0.8982
0.0112 16.0 1216 0.6373 0.9048
0.0122 17.0 1292 0.6091 0.8982
0.0218 18.0 1368 0.7005 0.8965
0.0052 19.0 1444 0.6533 0.8998
0.0143 20.0 1520 0.5987 0.9048
0.0047 21.0 1596 0.6407 0.8982
0.005 22.0 1672 0.7577 0.8898
0.0133 23.0 1748 0.7568 0.8848
0.0064 24.0 1824 0.6963 0.8915
0.0056 25.0 1900 0.6832 0.8982
0.0033 26.0 1976 0.6578 0.8982
0.0048 27.0 2052 0.6821 0.9032
0.0003 28.0 2128 0.6751 0.8998
0.0002 29.0 2204 0.6826 0.8998
0.0054 30.0 2280 0.7208 0.8965
0.0234 31.0 2356 0.7169 0.8915
0.0066 32.0 2432 0.7161 0.8982
0.0078 33.0 2508 0.6895 0.8982
0.004 34.0 2584 0.7616 0.8982
0.0117 35.0 2660 0.7211 0.9032
0.0 36.0 2736 0.6772 0.8982
0.0027 37.0 2812 0.6751 0.8998
0.0023 38.0 2888 0.7465 0.9082
0.0025 39.0 2964 0.6434 0.9132
0.0043 40.0 3040 0.6803 0.9032
0.005 41.0 3116 0.6970 0.8982
0.0 42.0 3192 0.6953 0.8998
0.0002 43.0 3268 0.6864 0.8982
0.0001 44.0 3344 0.6955 0.9015
0.0058 45.0 3420 0.7259 0.8948
0.0 46.0 3496 0.7126 0.9032
0.0044 47.0 3572 0.7081 0.8965
0.0032 48.0 3648 0.7104 0.8965
0.0023 49.0 3724 0.7077 0.8965
0.0057 50.0 3800 0.7081 0.8965

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0