smids_1x_beit_base_rms_00001_fold1

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7081
  • Accuracy: 0.8965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3415 1.0 76 0.3600 0.8531
0.1821 2.0 152 0.2813 0.8865
0.1106 3.0 228 0.2915 0.8965
0.0837 4.0 304 0.4355 0.8748
0.0461 5.0 380 0.3524 0.8831
0.0314 6.0 456 0.3471 0.9065
0.052 7.0 532 0.3906 0.9032
0.0094 8.0 608 0.4902 0.8998
0.0397 9.0 684 0.5074 0.8848
0.0068 10.0 760 0.5396 0.8965
0.0009 11.0 836 0.4910 0.9032
0.0007 12.0 912 0.5441 0.8982
0.0176 13.0 988 0.5729 0.8965
0.008 14.0 1064 0.5831 0.8965
0.0023 15.0 1140 0.6581 0.8982
0.0112 16.0 1216 0.6373 0.9048
0.0122 17.0 1292 0.6091 0.8982
0.0218 18.0 1368 0.7005 0.8965
0.0052 19.0 1444 0.6533 0.8998
0.0143 20.0 1520 0.5987 0.9048
0.0047 21.0 1596 0.6407 0.8982
0.005 22.0 1672 0.7577 0.8898
0.0133 23.0 1748 0.7568 0.8848
0.0064 24.0 1824 0.6963 0.8915
0.0056 25.0 1900 0.6832 0.8982
0.0033 26.0 1976 0.6578 0.8982
0.0048 27.0 2052 0.6821 0.9032
0.0003 28.0 2128 0.6751 0.8998
0.0002 29.0 2204 0.6826 0.8998
0.0054 30.0 2280 0.7208 0.8965
0.0234 31.0 2356 0.7169 0.8915
0.0066 32.0 2432 0.7161 0.8982
0.0078 33.0 2508 0.6895 0.8982
0.004 34.0 2584 0.7616 0.8982
0.0117 35.0 2660 0.7211 0.9032
0.0 36.0 2736 0.6772 0.8982
0.0027 37.0 2812 0.6751 0.8998
0.0023 38.0 2888 0.7465 0.9082
0.0025 39.0 2964 0.6434 0.9132
0.0043 40.0 3040 0.6803 0.9032
0.005 41.0 3116 0.6970 0.8982
0.0 42.0 3192 0.6953 0.8998
0.0002 43.0 3268 0.6864 0.8982
0.0001 44.0 3344 0.6955 0.9015
0.0058 45.0 3420 0.7259 0.8948
0.0 46.0 3496 0.7126 0.9032
0.0044 47.0 3572 0.7081 0.8965
0.0032 48.0 3648 0.7104 0.8965
0.0023 49.0 3724 0.7077 0.8965
0.0057 50.0 3800 0.7081 0.8965

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
5
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hkivancoral/smids_1x_beit_base_rms_00001_fold1

Finetuned
(292)
this model

Evaluation results