hkivancoral's picture
End of training
8b2e48f
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_beit_large_adamax_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8716666666666667

smids_10x_beit_large_adamax_001_fold4

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6842
  • Accuracy: 0.8717

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3361 1.0 750 0.4333 0.8367
0.2968 2.0 1500 0.4495 0.8467
0.288 3.0 2250 0.4264 0.8383
0.2379 4.0 3000 0.4907 0.85
0.1893 5.0 3750 0.4876 0.8533
0.1419 6.0 4500 0.4376 0.8667
0.1288 7.0 5250 0.5742 0.84
0.079 8.0 6000 0.6426 0.86
0.0885 9.0 6750 0.6694 0.8617
0.0513 10.0 7500 0.7772 0.8483
0.0371 11.0 8250 0.7425 0.8667
0.0559 12.0 9000 0.7844 0.8633
0.0437 13.0 9750 0.9475 0.8617
0.0237 14.0 10500 0.8539 0.86
0.0064 15.0 11250 1.1662 0.8683
0.0766 16.0 12000 1.1003 0.8683
0.0045 17.0 12750 1.1294 0.8633
0.0012 18.0 13500 1.0595 0.8717
0.0107 19.0 14250 1.0246 0.875
0.0098 20.0 15000 0.9670 0.8633
0.0227 21.0 15750 1.0829 0.8633
0.0004 22.0 16500 1.0091 0.855
0.0026 23.0 17250 1.0123 0.8667
0.001 24.0 18000 1.0183 0.8783
0.0083 25.0 18750 1.2133 0.8533
0.0076 26.0 19500 1.0638 0.865
0.0045 27.0 20250 1.1546 0.8717
0.0001 28.0 21000 1.0902 0.8567
0.0003 29.0 21750 1.1809 0.86
0.0 30.0 22500 1.2715 0.8733
0.0001 31.0 23250 1.1922 0.8767
0.0 32.0 24000 1.4076 0.87
0.0075 33.0 24750 1.3961 0.8617
0.0 34.0 25500 1.4345 0.875
0.0 35.0 26250 1.6125 0.8683
0.0 36.0 27000 1.5456 0.8567
0.0 37.0 27750 1.5632 0.865
0.0 38.0 28500 1.6349 0.8617
0.0 39.0 29250 1.5362 0.8617
0.0 40.0 30000 1.6434 0.8667
0.0 41.0 30750 1.6815 0.87
0.0 42.0 31500 1.6593 0.8667
0.0 43.0 32250 1.6757 0.87
0.0 44.0 33000 1.6503 0.8683
0.0 45.0 33750 1.6999 0.8667
0.0 46.0 34500 1.6868 0.8667
0.0 47.0 35250 1.6803 0.87
0.0 48.0 36000 1.6872 0.8733
0.0 49.0 36750 1.6911 0.8717
0.0 50.0 37500 1.6842 0.8717

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2