smids_10x_beit_large_adamax_001_fold4

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6842
  • Accuracy: 0.8717

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3361 1.0 750 0.4333 0.8367
0.2968 2.0 1500 0.4495 0.8467
0.288 3.0 2250 0.4264 0.8383
0.2379 4.0 3000 0.4907 0.85
0.1893 5.0 3750 0.4876 0.8533
0.1419 6.0 4500 0.4376 0.8667
0.1288 7.0 5250 0.5742 0.84
0.079 8.0 6000 0.6426 0.86
0.0885 9.0 6750 0.6694 0.8617
0.0513 10.0 7500 0.7772 0.8483
0.0371 11.0 8250 0.7425 0.8667
0.0559 12.0 9000 0.7844 0.8633
0.0437 13.0 9750 0.9475 0.8617
0.0237 14.0 10500 0.8539 0.86
0.0064 15.0 11250 1.1662 0.8683
0.0766 16.0 12000 1.1003 0.8683
0.0045 17.0 12750 1.1294 0.8633
0.0012 18.0 13500 1.0595 0.8717
0.0107 19.0 14250 1.0246 0.875
0.0098 20.0 15000 0.9670 0.8633
0.0227 21.0 15750 1.0829 0.8633
0.0004 22.0 16500 1.0091 0.855
0.0026 23.0 17250 1.0123 0.8667
0.001 24.0 18000 1.0183 0.8783
0.0083 25.0 18750 1.2133 0.8533
0.0076 26.0 19500 1.0638 0.865
0.0045 27.0 20250 1.1546 0.8717
0.0001 28.0 21000 1.0902 0.8567
0.0003 29.0 21750 1.1809 0.86
0.0 30.0 22500 1.2715 0.8733
0.0001 31.0 23250 1.1922 0.8767
0.0 32.0 24000 1.4076 0.87
0.0075 33.0 24750 1.3961 0.8617
0.0 34.0 25500 1.4345 0.875
0.0 35.0 26250 1.6125 0.8683
0.0 36.0 27000 1.5456 0.8567
0.0 37.0 27750 1.5632 0.865
0.0 38.0 28500 1.6349 0.8617
0.0 39.0 29250 1.5362 0.8617
0.0 40.0 30000 1.6434 0.8667
0.0 41.0 30750 1.6815 0.87
0.0 42.0 31500 1.6593 0.8667
0.0 43.0 32250 1.6757 0.87
0.0 44.0 33000 1.6503 0.8683
0.0 45.0 33750 1.6999 0.8667
0.0 46.0 34500 1.6868 0.8667
0.0 47.0 35250 1.6803 0.87
0.0 48.0 36000 1.6872 0.8733
0.0 49.0 36750 1.6911 0.8717
0.0 50.0 37500 1.6842 0.8717

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hkivancoral/smids_10x_beit_large_adamax_001_fold4

Finetuned
(42)
this model

Evaluation results