hkivancoral's picture
End of training
081abb8
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_rms_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5348837209302325

hushem_5x_deit_small_rms_001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4338
  • Accuracy: 0.5349

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1632 1.0 28 2.6011 0.2558
1.512 2.0 56 1.9238 0.2558
1.4664 3.0 84 1.5930 0.2558
1.4243 4.0 112 1.6311 0.2558
1.4308 5.0 140 1.5023 0.2326
1.3985 6.0 168 1.3885 0.2326
1.6118 7.0 196 1.8250 0.2326
1.4607 8.0 224 1.4482 0.2558
1.4254 9.0 252 1.5210 0.2326
1.2281 10.0 280 1.2713 0.2791
1.1707 11.0 308 1.6980 0.3256
1.1948 12.0 336 1.3889 0.3488
1.0995 13.0 364 1.2122 0.4651
1.0119 14.0 392 1.2109 0.3721
1.025 15.0 420 1.1189 0.4419
0.9953 16.0 448 1.0970 0.5581
1.0322 17.0 476 1.1852 0.5581
1.0805 18.0 504 1.3503 0.4651
1.0129 19.0 532 1.0139 0.5581
0.8769 20.0 560 1.2502 0.5349
0.9527 21.0 588 0.9400 0.6977
0.8714 22.0 616 0.9462 0.6744
0.8727 23.0 644 1.1395 0.4419
0.8037 24.0 672 0.9359 0.5814
0.7753 25.0 700 0.7772 0.6047
0.8041 26.0 728 0.7536 0.6744
0.8222 27.0 756 1.0294 0.4186
0.7867 28.0 784 1.0146 0.6512
0.7746 29.0 812 1.1197 0.5116
0.6826 30.0 840 0.8534 0.6977
0.6952 31.0 868 0.9094 0.5814
0.7133 32.0 896 0.7819 0.6047
0.6818 33.0 924 0.8848 0.6977
0.634 34.0 952 1.0225 0.6047
0.7437 35.0 980 0.9642 0.5349
0.6195 36.0 1008 1.1344 0.6047
0.6464 37.0 1036 1.0624 0.4186
0.5946 38.0 1064 1.1057 0.5116
0.5887 39.0 1092 1.0910 0.6512
0.6287 40.0 1120 1.0898 0.5581
0.5714 41.0 1148 1.2124 0.5349
0.5356 42.0 1176 1.2782 0.5116
0.4544 43.0 1204 1.1905 0.5814
0.3966 44.0 1232 1.4293 0.5349
0.3676 45.0 1260 1.3361 0.5581
0.3673 46.0 1288 1.3624 0.5349
0.3108 47.0 1316 1.3804 0.5581
0.2776 48.0 1344 1.4296 0.5349
0.2985 49.0 1372 1.4338 0.5349
0.271 50.0 1400 1.4338 0.5349

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0