File size: 4,816 Bytes
081abb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_small_rms_001_fold3
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5348837209302325
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_deit_small_rms_001_fold3

This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4338
- Accuracy: 0.5349

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1632        | 1.0   | 28   | 2.6011          | 0.2558   |
| 1.512         | 2.0   | 56   | 1.9238          | 0.2558   |
| 1.4664        | 3.0   | 84   | 1.5930          | 0.2558   |
| 1.4243        | 4.0   | 112  | 1.6311          | 0.2558   |
| 1.4308        | 5.0   | 140  | 1.5023          | 0.2326   |
| 1.3985        | 6.0   | 168  | 1.3885          | 0.2326   |
| 1.6118        | 7.0   | 196  | 1.8250          | 0.2326   |
| 1.4607        | 8.0   | 224  | 1.4482          | 0.2558   |
| 1.4254        | 9.0   | 252  | 1.5210          | 0.2326   |
| 1.2281        | 10.0  | 280  | 1.2713          | 0.2791   |
| 1.1707        | 11.0  | 308  | 1.6980          | 0.3256   |
| 1.1948        | 12.0  | 336  | 1.3889          | 0.3488   |
| 1.0995        | 13.0  | 364  | 1.2122          | 0.4651   |
| 1.0119        | 14.0  | 392  | 1.2109          | 0.3721   |
| 1.025         | 15.0  | 420  | 1.1189          | 0.4419   |
| 0.9953        | 16.0  | 448  | 1.0970          | 0.5581   |
| 1.0322        | 17.0  | 476  | 1.1852          | 0.5581   |
| 1.0805        | 18.0  | 504  | 1.3503          | 0.4651   |
| 1.0129        | 19.0  | 532  | 1.0139          | 0.5581   |
| 0.8769        | 20.0  | 560  | 1.2502          | 0.5349   |
| 0.9527        | 21.0  | 588  | 0.9400          | 0.6977   |
| 0.8714        | 22.0  | 616  | 0.9462          | 0.6744   |
| 0.8727        | 23.0  | 644  | 1.1395          | 0.4419   |
| 0.8037        | 24.0  | 672  | 0.9359          | 0.5814   |
| 0.7753        | 25.0  | 700  | 0.7772          | 0.6047   |
| 0.8041        | 26.0  | 728  | 0.7536          | 0.6744   |
| 0.8222        | 27.0  | 756  | 1.0294          | 0.4186   |
| 0.7867        | 28.0  | 784  | 1.0146          | 0.6512   |
| 0.7746        | 29.0  | 812  | 1.1197          | 0.5116   |
| 0.6826        | 30.0  | 840  | 0.8534          | 0.6977   |
| 0.6952        | 31.0  | 868  | 0.9094          | 0.5814   |
| 0.7133        | 32.0  | 896  | 0.7819          | 0.6047   |
| 0.6818        | 33.0  | 924  | 0.8848          | 0.6977   |
| 0.634         | 34.0  | 952  | 1.0225          | 0.6047   |
| 0.7437        | 35.0  | 980  | 0.9642          | 0.5349   |
| 0.6195        | 36.0  | 1008 | 1.1344          | 0.6047   |
| 0.6464        | 37.0  | 1036 | 1.0624          | 0.4186   |
| 0.5946        | 38.0  | 1064 | 1.1057          | 0.5116   |
| 0.5887        | 39.0  | 1092 | 1.0910          | 0.6512   |
| 0.6287        | 40.0  | 1120 | 1.0898          | 0.5581   |
| 0.5714        | 41.0  | 1148 | 1.2124          | 0.5349   |
| 0.5356        | 42.0  | 1176 | 1.2782          | 0.5116   |
| 0.4544        | 43.0  | 1204 | 1.1905          | 0.5814   |
| 0.3966        | 44.0  | 1232 | 1.4293          | 0.5349   |
| 0.3676        | 45.0  | 1260 | 1.3361          | 0.5581   |
| 0.3673        | 46.0  | 1288 | 1.3624          | 0.5349   |
| 0.3108        | 47.0  | 1316 | 1.3804          | 0.5581   |
| 0.2776        | 48.0  | 1344 | 1.4296          | 0.5349   |
| 0.2985        | 49.0  | 1372 | 1.4338          | 0.5349   |
| 0.271         | 50.0  | 1400 | 1.4338          | 0.5349   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0