hkivancoral's picture
End of training
244710e
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_beit_base_rms_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7619047619047619

hushem_5x_beit_base_rms_001_fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5372
  • Accuracy: 0.7619

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4749 1.0 28 1.3999 0.2381
1.39 2.0 56 1.4010 0.2619
1.4057 3.0 84 1.3886 0.2381
1.3953 4.0 112 1.3773 0.2381
1.3855 5.0 140 1.3607 0.2619
1.3721 6.0 168 1.1238 0.5
1.2199 7.0 196 1.2305 0.4762
1.1505 8.0 224 0.9832 0.4762
1.1076 9.0 252 0.9145 0.5476
1.04 10.0 280 0.9689 0.5476
0.9947 11.0 308 0.8866 0.6429
1.0266 12.0 336 0.8639 0.6905
0.9955 13.0 364 0.8959 0.6190
0.9564 14.0 392 0.8608 0.6667
0.9123 15.0 420 0.7711 0.6905
0.9391 16.0 448 0.7070 0.7619
0.9117 17.0 476 0.7366 0.7619
0.902 18.0 504 0.7650 0.7143
0.8479 19.0 532 0.7181 0.7381
0.8138 20.0 560 0.8337 0.6667
0.7593 21.0 588 0.8325 0.6905
0.8558 22.0 616 0.7211 0.8095
0.8609 23.0 644 0.7758 0.7619
0.7997 24.0 672 0.8535 0.7143
0.6915 25.0 700 0.8962 0.7381
0.7445 26.0 728 0.7116 0.7619
0.6818 27.0 756 0.9464 0.5714
0.6812 28.0 784 0.6802 0.7143
0.662 29.0 812 1.0464 0.5476
0.6161 30.0 840 0.7154 0.7857
0.5942 31.0 868 0.6122 0.7619
0.571 32.0 896 0.6263 0.7857
0.5357 33.0 924 0.8564 0.8095
0.4815 34.0 952 0.9986 0.7381
0.5261 35.0 980 0.9173 0.8095
0.3508 36.0 1008 1.0846 0.7619
0.3469 37.0 1036 0.9412 0.8333
0.3024 38.0 1064 0.9602 0.8333
0.2908 39.0 1092 1.1234 0.8333
0.2222 40.0 1120 1.1275 0.8095
0.2149 41.0 1148 1.4618 0.7381
0.2207 42.0 1176 1.3470 0.7857
0.094 43.0 1204 1.5389 0.7619
0.1227 44.0 1232 1.3819 0.7857
0.0713 45.0 1260 1.5287 0.7619
0.0383 46.0 1288 1.5676 0.8095
0.0259 47.0 1316 1.4966 0.7857
0.023 48.0 1344 1.5355 0.7619
0.0304 49.0 1372 1.5372 0.7619
0.0233 50.0 1400 1.5372 0.7619

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0