File size: 4,814 Bytes
244710e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_beit_base_rms_001_fold4
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7619047619047619
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_beit_base_rms_001_fold4

This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5372
- Accuracy: 0.7619

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.4749        | 1.0   | 28   | 1.3999          | 0.2381   |
| 1.39          | 2.0   | 56   | 1.4010          | 0.2619   |
| 1.4057        | 3.0   | 84   | 1.3886          | 0.2381   |
| 1.3953        | 4.0   | 112  | 1.3773          | 0.2381   |
| 1.3855        | 5.0   | 140  | 1.3607          | 0.2619   |
| 1.3721        | 6.0   | 168  | 1.1238          | 0.5      |
| 1.2199        | 7.0   | 196  | 1.2305          | 0.4762   |
| 1.1505        | 8.0   | 224  | 0.9832          | 0.4762   |
| 1.1076        | 9.0   | 252  | 0.9145          | 0.5476   |
| 1.04          | 10.0  | 280  | 0.9689          | 0.5476   |
| 0.9947        | 11.0  | 308  | 0.8866          | 0.6429   |
| 1.0266        | 12.0  | 336  | 0.8639          | 0.6905   |
| 0.9955        | 13.0  | 364  | 0.8959          | 0.6190   |
| 0.9564        | 14.0  | 392  | 0.8608          | 0.6667   |
| 0.9123        | 15.0  | 420  | 0.7711          | 0.6905   |
| 0.9391        | 16.0  | 448  | 0.7070          | 0.7619   |
| 0.9117        | 17.0  | 476  | 0.7366          | 0.7619   |
| 0.902         | 18.0  | 504  | 0.7650          | 0.7143   |
| 0.8479        | 19.0  | 532  | 0.7181          | 0.7381   |
| 0.8138        | 20.0  | 560  | 0.8337          | 0.6667   |
| 0.7593        | 21.0  | 588  | 0.8325          | 0.6905   |
| 0.8558        | 22.0  | 616  | 0.7211          | 0.8095   |
| 0.8609        | 23.0  | 644  | 0.7758          | 0.7619   |
| 0.7997        | 24.0  | 672  | 0.8535          | 0.7143   |
| 0.6915        | 25.0  | 700  | 0.8962          | 0.7381   |
| 0.7445        | 26.0  | 728  | 0.7116          | 0.7619   |
| 0.6818        | 27.0  | 756  | 0.9464          | 0.5714   |
| 0.6812        | 28.0  | 784  | 0.6802          | 0.7143   |
| 0.662         | 29.0  | 812  | 1.0464          | 0.5476   |
| 0.6161        | 30.0  | 840  | 0.7154          | 0.7857   |
| 0.5942        | 31.0  | 868  | 0.6122          | 0.7619   |
| 0.571         | 32.0  | 896  | 0.6263          | 0.7857   |
| 0.5357        | 33.0  | 924  | 0.8564          | 0.8095   |
| 0.4815        | 34.0  | 952  | 0.9986          | 0.7381   |
| 0.5261        | 35.0  | 980  | 0.9173          | 0.8095   |
| 0.3508        | 36.0  | 1008 | 1.0846          | 0.7619   |
| 0.3469        | 37.0  | 1036 | 0.9412          | 0.8333   |
| 0.3024        | 38.0  | 1064 | 0.9602          | 0.8333   |
| 0.2908        | 39.0  | 1092 | 1.1234          | 0.8333   |
| 0.2222        | 40.0  | 1120 | 1.1275          | 0.8095   |
| 0.2149        | 41.0  | 1148 | 1.4618          | 0.7381   |
| 0.2207        | 42.0  | 1176 | 1.3470          | 0.7857   |
| 0.094         | 43.0  | 1204 | 1.5389          | 0.7619   |
| 0.1227        | 44.0  | 1232 | 1.3819          | 0.7857   |
| 0.0713        | 45.0  | 1260 | 1.5287          | 0.7619   |
| 0.0383        | 46.0  | 1288 | 1.5676          | 0.8095   |
| 0.0259        | 47.0  | 1316 | 1.4966          | 0.7857   |
| 0.023         | 48.0  | 1344 | 1.5355          | 0.7619   |
| 0.0304        | 49.0  | 1372 | 1.5372          | 0.7619   |
| 0.0233        | 50.0  | 1400 | 1.5372          | 0.7619   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0