hkivancoral's picture
End of training
7fc9820
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_beit_base_rms_0001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.35555555555555557

hushem_5x_beit_base_rms_0001_fold1

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6811
  • Accuracy: 0.3556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4287 1.0 27 1.3926 0.2222
1.3907 2.0 54 1.3975 0.2667
1.358 3.0 81 1.5093 0.2444
1.3416 4.0 108 1.5118 0.2444
1.2056 5.0 135 1.4928 0.2444
1.1299 6.0 162 1.6562 0.2222
1.1641 7.0 189 1.5947 0.2444
1.1473 8.0 216 1.5964 0.2444
1.1298 9.0 243 1.7663 0.2444
1.1045 10.0 270 1.6309 0.3778
0.8985 11.0 297 1.6908 0.4
0.7744 12.0 324 1.3949 0.3556
0.7617 13.0 351 1.4646 0.3778
0.6843 14.0 378 1.5910 0.3778
0.6647 15.0 405 1.8050 0.4
0.6363 16.0 432 1.7016 0.3333
0.6362 17.0 459 1.8539 0.3778
0.6858 18.0 486 1.8678 0.3556
0.7039 19.0 513 1.5776 0.3556
0.6292 20.0 540 1.8552 0.3111
0.4567 21.0 567 1.7854 0.3556
0.5954 22.0 594 2.4822 0.3556
0.5737 23.0 621 2.0564 0.4
0.4941 24.0 648 1.9451 0.3111
0.523 25.0 675 2.0359 0.3778
0.5221 26.0 702 2.1184 0.4
0.4589 27.0 729 2.0471 0.3556
0.4473 28.0 756 2.5353 0.3556
0.4328 29.0 783 2.7479 0.3556
0.4259 30.0 810 2.2239 0.3778
0.3698 31.0 837 2.5363 0.3556
0.3577 32.0 864 2.5264 0.3556
0.3882 33.0 891 2.2649 0.3333
0.3526 34.0 918 2.6438 0.3556
0.2747 35.0 945 2.3584 0.3778
0.2842 36.0 972 2.8515 0.3556
0.2603 37.0 999 2.3416 0.3778
0.2268 38.0 1026 2.7485 0.3778
0.2 39.0 1053 3.3636 0.3333
0.2049 40.0 1080 3.1692 0.3333
0.1369 41.0 1107 3.3885 0.3556
0.1813 42.0 1134 3.3020 0.3333
0.1518 43.0 1161 2.8618 0.4
0.0986 44.0 1188 3.2902 0.3778
0.131 45.0 1215 3.3898 0.3333
0.0809 46.0 1242 3.5629 0.3333
0.048 47.0 1269 3.7516 0.3333
0.038 48.0 1296 3.6814 0.3556
0.0465 49.0 1323 3.6811 0.3556
0.0644 50.0 1350 3.6811 0.3556

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0