File size: 4,818 Bytes
7fc9820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_beit_base_rms_0001_fold1
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.35555555555555557
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_beit_base_rms_0001_fold1

This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6811
- Accuracy: 0.3556

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.4287        | 1.0   | 27   | 1.3926          | 0.2222   |
| 1.3907        | 2.0   | 54   | 1.3975          | 0.2667   |
| 1.358         | 3.0   | 81   | 1.5093          | 0.2444   |
| 1.3416        | 4.0   | 108  | 1.5118          | 0.2444   |
| 1.2056        | 5.0   | 135  | 1.4928          | 0.2444   |
| 1.1299        | 6.0   | 162  | 1.6562          | 0.2222   |
| 1.1641        | 7.0   | 189  | 1.5947          | 0.2444   |
| 1.1473        | 8.0   | 216  | 1.5964          | 0.2444   |
| 1.1298        | 9.0   | 243  | 1.7663          | 0.2444   |
| 1.1045        | 10.0  | 270  | 1.6309          | 0.3778   |
| 0.8985        | 11.0  | 297  | 1.6908          | 0.4      |
| 0.7744        | 12.0  | 324  | 1.3949          | 0.3556   |
| 0.7617        | 13.0  | 351  | 1.4646          | 0.3778   |
| 0.6843        | 14.0  | 378  | 1.5910          | 0.3778   |
| 0.6647        | 15.0  | 405  | 1.8050          | 0.4      |
| 0.6363        | 16.0  | 432  | 1.7016          | 0.3333   |
| 0.6362        | 17.0  | 459  | 1.8539          | 0.3778   |
| 0.6858        | 18.0  | 486  | 1.8678          | 0.3556   |
| 0.7039        | 19.0  | 513  | 1.5776          | 0.3556   |
| 0.6292        | 20.0  | 540  | 1.8552          | 0.3111   |
| 0.4567        | 21.0  | 567  | 1.7854          | 0.3556   |
| 0.5954        | 22.0  | 594  | 2.4822          | 0.3556   |
| 0.5737        | 23.0  | 621  | 2.0564          | 0.4      |
| 0.4941        | 24.0  | 648  | 1.9451          | 0.3111   |
| 0.523         | 25.0  | 675  | 2.0359          | 0.3778   |
| 0.5221        | 26.0  | 702  | 2.1184          | 0.4      |
| 0.4589        | 27.0  | 729  | 2.0471          | 0.3556   |
| 0.4473        | 28.0  | 756  | 2.5353          | 0.3556   |
| 0.4328        | 29.0  | 783  | 2.7479          | 0.3556   |
| 0.4259        | 30.0  | 810  | 2.2239          | 0.3778   |
| 0.3698        | 31.0  | 837  | 2.5363          | 0.3556   |
| 0.3577        | 32.0  | 864  | 2.5264          | 0.3556   |
| 0.3882        | 33.0  | 891  | 2.2649          | 0.3333   |
| 0.3526        | 34.0  | 918  | 2.6438          | 0.3556   |
| 0.2747        | 35.0  | 945  | 2.3584          | 0.3778   |
| 0.2842        | 36.0  | 972  | 2.8515          | 0.3556   |
| 0.2603        | 37.0  | 999  | 2.3416          | 0.3778   |
| 0.2268        | 38.0  | 1026 | 2.7485          | 0.3778   |
| 0.2           | 39.0  | 1053 | 3.3636          | 0.3333   |
| 0.2049        | 40.0  | 1080 | 3.1692          | 0.3333   |
| 0.1369        | 41.0  | 1107 | 3.3885          | 0.3556   |
| 0.1813        | 42.0  | 1134 | 3.3020          | 0.3333   |
| 0.1518        | 43.0  | 1161 | 2.8618          | 0.4      |
| 0.0986        | 44.0  | 1188 | 3.2902          | 0.3778   |
| 0.131         | 45.0  | 1215 | 3.3898          | 0.3333   |
| 0.0809        | 46.0  | 1242 | 3.5629          | 0.3333   |
| 0.048         | 47.0  | 1269 | 3.7516          | 0.3333   |
| 0.038         | 48.0  | 1296 | 3.6814          | 0.3556   |
| 0.0465        | 49.0  | 1323 | 3.6811          | 0.3556   |
| 0.0644        | 50.0  | 1350 | 3.6811          | 0.3556   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0