metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_tiny_rms_lr0001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5777777777777777
hushem_1x_deit_tiny_rms_lr0001_fold1
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 3.0724
- Accuracy: 0.5778
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.7581 | 0.2444 |
2.2176 | 2.0 | 12 | 1.4575 | 0.2444 |
2.2176 | 3.0 | 18 | 1.4070 | 0.2444 |
1.4625 | 4.0 | 24 | 1.4089 | 0.2444 |
1.4303 | 5.0 | 30 | 1.4530 | 0.2667 |
1.4303 | 6.0 | 36 | 1.3605 | 0.3778 |
1.3759 | 7.0 | 42 | 1.4068 | 0.3778 |
1.3759 | 8.0 | 48 | 1.3279 | 0.2889 |
1.3199 | 9.0 | 54 | 1.5997 | 0.2444 |
1.2335 | 10.0 | 60 | 1.5834 | 0.2444 |
1.2335 | 11.0 | 66 | 1.6144 | 0.3333 |
1.0406 | 12.0 | 72 | 1.1266 | 0.5111 |
1.0406 | 13.0 | 78 | 1.6894 | 0.3556 |
0.851 | 14.0 | 84 | 1.8080 | 0.4444 |
0.5856 | 15.0 | 90 | 2.0552 | 0.3778 |
0.5856 | 16.0 | 96 | 1.3379 | 0.4889 |
0.3402 | 17.0 | 102 | 1.4787 | 0.4889 |
0.3402 | 18.0 | 108 | 2.2439 | 0.4222 |
0.233 | 19.0 | 114 | 1.7239 | 0.4889 |
0.1016 | 20.0 | 120 | 2.5401 | 0.4222 |
0.1016 | 21.0 | 126 | 1.5433 | 0.5778 |
0.0994 | 22.0 | 132 | 1.8891 | 0.5333 |
0.0994 | 23.0 | 138 | 1.9405 | 0.4889 |
0.0839 | 24.0 | 144 | 1.5418 | 0.5778 |
0.0282 | 25.0 | 150 | 2.4010 | 0.5778 |
0.0282 | 26.0 | 156 | 2.6175 | 0.5778 |
0.0011 | 27.0 | 162 | 2.7024 | 0.5778 |
0.0011 | 28.0 | 168 | 2.7954 | 0.5778 |
0.0007 | 29.0 | 174 | 2.8362 | 0.5778 |
0.0006 | 30.0 | 180 | 2.8852 | 0.5778 |
0.0006 | 31.0 | 186 | 2.9050 | 0.5778 |
0.0005 | 32.0 | 192 | 2.9414 | 0.5778 |
0.0005 | 33.0 | 198 | 2.9746 | 0.5778 |
0.0005 | 34.0 | 204 | 2.9947 | 0.5778 |
0.0004 | 35.0 | 210 | 3.0141 | 0.5778 |
0.0004 | 36.0 | 216 | 3.0300 | 0.5778 |
0.0004 | 37.0 | 222 | 3.0447 | 0.5778 |
0.0004 | 38.0 | 228 | 3.0565 | 0.5778 |
0.0003 | 39.0 | 234 | 3.0642 | 0.5778 |
0.0003 | 40.0 | 240 | 3.0696 | 0.5778 |
0.0003 | 41.0 | 246 | 3.0717 | 0.5778 |
0.0003 | 42.0 | 252 | 3.0724 | 0.5778 |
0.0003 | 43.0 | 258 | 3.0724 | 0.5778 |
0.0003 | 44.0 | 264 | 3.0724 | 0.5778 |
0.0003 | 45.0 | 270 | 3.0724 | 0.5778 |
0.0003 | 46.0 | 276 | 3.0724 | 0.5778 |
0.0003 | 47.0 | 282 | 3.0724 | 0.5778 |
0.0003 | 48.0 | 288 | 3.0724 | 0.5778 |
0.0003 | 49.0 | 294 | 3.0724 | 0.5778 |
0.0003 | 50.0 | 300 | 3.0724 | 0.5778 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1