hkivancoral's picture
End of training
7b886c5
|
raw
history blame
4.82 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_rms_lr0001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5777777777777777

hushem_1x_deit_tiny_rms_lr0001_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0724
  • Accuracy: 0.5778

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.7581 0.2444
2.2176 2.0 12 1.4575 0.2444
2.2176 3.0 18 1.4070 0.2444
1.4625 4.0 24 1.4089 0.2444
1.4303 5.0 30 1.4530 0.2667
1.4303 6.0 36 1.3605 0.3778
1.3759 7.0 42 1.4068 0.3778
1.3759 8.0 48 1.3279 0.2889
1.3199 9.0 54 1.5997 0.2444
1.2335 10.0 60 1.5834 0.2444
1.2335 11.0 66 1.6144 0.3333
1.0406 12.0 72 1.1266 0.5111
1.0406 13.0 78 1.6894 0.3556
0.851 14.0 84 1.8080 0.4444
0.5856 15.0 90 2.0552 0.3778
0.5856 16.0 96 1.3379 0.4889
0.3402 17.0 102 1.4787 0.4889
0.3402 18.0 108 2.2439 0.4222
0.233 19.0 114 1.7239 0.4889
0.1016 20.0 120 2.5401 0.4222
0.1016 21.0 126 1.5433 0.5778
0.0994 22.0 132 1.8891 0.5333
0.0994 23.0 138 1.9405 0.4889
0.0839 24.0 144 1.5418 0.5778
0.0282 25.0 150 2.4010 0.5778
0.0282 26.0 156 2.6175 0.5778
0.0011 27.0 162 2.7024 0.5778
0.0011 28.0 168 2.7954 0.5778
0.0007 29.0 174 2.8362 0.5778
0.0006 30.0 180 2.8852 0.5778
0.0006 31.0 186 2.9050 0.5778
0.0005 32.0 192 2.9414 0.5778
0.0005 33.0 198 2.9746 0.5778
0.0005 34.0 204 2.9947 0.5778
0.0004 35.0 210 3.0141 0.5778
0.0004 36.0 216 3.0300 0.5778
0.0004 37.0 222 3.0447 0.5778
0.0004 38.0 228 3.0565 0.5778
0.0003 39.0 234 3.0642 0.5778
0.0003 40.0 240 3.0696 0.5778
0.0003 41.0 246 3.0717 0.5778
0.0003 42.0 252 3.0724 0.5778
0.0003 43.0 258 3.0724 0.5778
0.0003 44.0 264 3.0724 0.5778
0.0003 45.0 270 3.0724 0.5778
0.0003 46.0 276 3.0724 0.5778
0.0003 47.0 282 3.0724 0.5778
0.0003 48.0 288 3.0724 0.5778
0.0003 49.0 294 3.0724 0.5778
0.0003 50.0 300 3.0724 0.5778

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1