--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_rms_lr0001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5777777777777777 --- # hushem_1x_deit_tiny_rms_lr0001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.0724 - Accuracy: 0.5778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.7581 | 0.2444 | | 2.2176 | 2.0 | 12 | 1.4575 | 0.2444 | | 2.2176 | 3.0 | 18 | 1.4070 | 0.2444 | | 1.4625 | 4.0 | 24 | 1.4089 | 0.2444 | | 1.4303 | 5.0 | 30 | 1.4530 | 0.2667 | | 1.4303 | 6.0 | 36 | 1.3605 | 0.3778 | | 1.3759 | 7.0 | 42 | 1.4068 | 0.3778 | | 1.3759 | 8.0 | 48 | 1.3279 | 0.2889 | | 1.3199 | 9.0 | 54 | 1.5997 | 0.2444 | | 1.2335 | 10.0 | 60 | 1.5834 | 0.2444 | | 1.2335 | 11.0 | 66 | 1.6144 | 0.3333 | | 1.0406 | 12.0 | 72 | 1.1266 | 0.5111 | | 1.0406 | 13.0 | 78 | 1.6894 | 0.3556 | | 0.851 | 14.0 | 84 | 1.8080 | 0.4444 | | 0.5856 | 15.0 | 90 | 2.0552 | 0.3778 | | 0.5856 | 16.0 | 96 | 1.3379 | 0.4889 | | 0.3402 | 17.0 | 102 | 1.4787 | 0.4889 | | 0.3402 | 18.0 | 108 | 2.2439 | 0.4222 | | 0.233 | 19.0 | 114 | 1.7239 | 0.4889 | | 0.1016 | 20.0 | 120 | 2.5401 | 0.4222 | | 0.1016 | 21.0 | 126 | 1.5433 | 0.5778 | | 0.0994 | 22.0 | 132 | 1.8891 | 0.5333 | | 0.0994 | 23.0 | 138 | 1.9405 | 0.4889 | | 0.0839 | 24.0 | 144 | 1.5418 | 0.5778 | | 0.0282 | 25.0 | 150 | 2.4010 | 0.5778 | | 0.0282 | 26.0 | 156 | 2.6175 | 0.5778 | | 0.0011 | 27.0 | 162 | 2.7024 | 0.5778 | | 0.0011 | 28.0 | 168 | 2.7954 | 0.5778 | | 0.0007 | 29.0 | 174 | 2.8362 | 0.5778 | | 0.0006 | 30.0 | 180 | 2.8852 | 0.5778 | | 0.0006 | 31.0 | 186 | 2.9050 | 0.5778 | | 0.0005 | 32.0 | 192 | 2.9414 | 0.5778 | | 0.0005 | 33.0 | 198 | 2.9746 | 0.5778 | | 0.0005 | 34.0 | 204 | 2.9947 | 0.5778 | | 0.0004 | 35.0 | 210 | 3.0141 | 0.5778 | | 0.0004 | 36.0 | 216 | 3.0300 | 0.5778 | | 0.0004 | 37.0 | 222 | 3.0447 | 0.5778 | | 0.0004 | 38.0 | 228 | 3.0565 | 0.5778 | | 0.0003 | 39.0 | 234 | 3.0642 | 0.5778 | | 0.0003 | 40.0 | 240 | 3.0696 | 0.5778 | | 0.0003 | 41.0 | 246 | 3.0717 | 0.5778 | | 0.0003 | 42.0 | 252 | 3.0724 | 0.5778 | | 0.0003 | 43.0 | 258 | 3.0724 | 0.5778 | | 0.0003 | 44.0 | 264 | 3.0724 | 0.5778 | | 0.0003 | 45.0 | 270 | 3.0724 | 0.5778 | | 0.0003 | 46.0 | 276 | 3.0724 | 0.5778 | | 0.0003 | 47.0 | 282 | 3.0724 | 0.5778 | | 0.0003 | 48.0 | 288 | 3.0724 | 0.5778 | | 0.0003 | 49.0 | 294 | 3.0724 | 0.5778 | | 0.0003 | 50.0 | 300 | 3.0724 | 0.5778 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1