|
--- |
|
base_model: intfloat/multilingual-e5-base |
|
datasets: [] |
|
language: |
|
- vi |
|
- en |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: Bóng đá có lợi ích gì cho sức khỏe? |
|
sentences: |
|
- Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền. |
|
- Bóng đá là môn thể thao phổ biến nhất thế giới. |
|
- Bóng đá có thể giúp bạn kết nối với nhiều người hơn. |
|
|
|
model-index: |
|
- name: Halong Embedding |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.8294209702660407 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9233176838810642 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.9436619718309859 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9687010954616588 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.8294209702660407 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3145539906103286 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1931142410015649 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09906103286384975 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8145539906103286 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9178403755868545 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.9389671361502347 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9640062597809077 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.8976041381292648 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.879893558884169 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.8763179130484675 |
|
name: Cosine Map@100 |
|
|
|
--- |
|
|
|
# Halong Embedding |
|
|
|
Halong Embedding is a Vietnamese text embedding focused on RAG and production efficiency: |
|
- 📚 Trained on a in house dataset consist of approximately 100,000 examples of question and related documents |
|
- 🪆 Trained with a Matryoshka loss, allowing you to truncate embeddings with minimal performance loss: smaller embeddings are faster to compare. |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
You can find eval, fine-tune scripts [here](https://github.com/AndrewNgo-ini/MiAI_HieuNgo_EmbedingFineTune/blob/main/TextEmbeddingMiAI_DEMO.ipynb) as well as my [seminar](https://www.youtube.com/watch?v=oUFyFjGnXXw&t=1s) |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) <!-- at revision d13f1b27baf31030b7fd040960d60d909913633f --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** vi-focused, multilingual |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
import torch |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("hiieu/halong_embedding") |
|
|
|
# Define query and documents |
|
query = "Bóng đá có lợi ích gì cho sức khỏe?" |
|
docs = [ |
|
"Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền.", |
|
"Bóng đá là môn thể thao phổ biến nhất thế giới.", |
|
"Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý.", |
|
"Bóng đá có thể giúp bạn kết nối với nhiều người hơn.", |
|
"Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí." |
|
] |
|
|
|
# Encode query and documents |
|
query_embedding = model.encode([query]) |
|
doc_embeddings = model.encode(docs) |
|
similarities = model.similarity(query_embedding, doc_embeddings).flatten() |
|
|
|
# Sort documents by cosine similarity |
|
sorted_indices = torch.argsort(similarities, descending=True) |
|
sorted_docs = [docs[idx] for idx in sorted_indices] |
|
sorted_scores = [similarities[idx].item() for idx in sorted_indices] |
|
|
|
# Print sorted documents with their cosine scores |
|
for doc, score in zip(sorted_docs, sorted_scores): |
|
print(f"Document: {doc} - Cosine Similarity: {score:.4f}") |
|
|
|
# Document: Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền. - Cosine Similarity: 0.7318 |
|
# Document: Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý. - Cosine Similarity: 0.6623 |
|
# Document: Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí. - Cosine Similarity: 0.6102 |
|
# Document: Bóng đá có thể giúp bạn kết nối với nhiều người hơn. - Cosine Similarity: 0.4988 |
|
# Document: Bóng đá là môn thể thao phổ biến nhất thế giới. - Cosine Similarity: 0.4828 |
|
``` |
|
|
|
### Matryoshka Embeddings Inference |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
import torch.nn.functional as F |
|
import torch |
|
|
|
matryoshka_dim = 64 |
|
model = SentenceTransformer( |
|
"hiieu/halong_embedding", |
|
truncate_dim=matryoshka_dim, |
|
) |
|
|
|
# Define query and documents |
|
query = "Bóng đá có lợi ích gì cho sức khỏe?" |
|
docs = [ |
|
"Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền.", |
|
"Bóng đá là môn thể thao phổ biến nhất thế giới.", |
|
"Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý.", |
|
"Bóng đá có thể giúp bạn kết nối với nhiều người hơn.", |
|
"Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí." |
|
] |
|
|
|
# Encode query and documents |
|
query_embedding = model.encode([query]) |
|
doc_embeddings = model.encode(docs) |
|
similarities = model.similarity(query_embedding, doc_embeddings).flatten() |
|
|
|
# Sort documents by cosine similarity |
|
sorted_indices = torch.argsort(similarities, descending=True) |
|
sorted_docs = [docs[idx] for idx in sorted_indices] |
|
sorted_scores = [similarities[idx].item() for idx in sorted_indices] |
|
|
|
# Print sorted documents with their cosine scores |
|
for doc, score in zip(sorted_docs, sorted_scores): |
|
print(f"Document: {doc} - Cosine Similarity: {score:.4f}") |
|
|
|
# Document: Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền. - Cosine Similarity: 0.8045 |
|
# Document: Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý. - Cosine Similarity: 0.7676 |
|
# Document: Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí. - Cosine Similarity: 0.6758 |
|
# Document: Bóng đá có thể giúp bạn kết nối với nhiều người hơn. - Cosine Similarity: 0.5931 |
|
# Document: Bóng đá là môn thể thao phổ biến nhất thế giới. - Cosine Similarity: 0.5105 |
|
``` |
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: [Zalo legal retrieval dataet](https://huggingface.co/datasets/hiieu/legal_eval_label) |
|
* *note*: We sampled 20% of the Zalo Legal train dataset for fast testing; our model did not train on this dataset. |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Model | Accuracy@1 | Accuracy@3 | Accuracy@5 | Accuracy@10 | Precision@1 | Precision@3 | Precision@5 | Precision@10 | Recall@1 | Recall@3 | Recall@5 | Recall@10 | NDCG@10 | MRR@10 | MAP@100 | |
|
|----------------------|------------|------------|------------|-------------|-------------|--------------|--------------|---------------|-----------|-----------|-----------|------------|---------|--------|---------| |
|
| |
|
vietnamese-bi-encoder | 0.8169 | 0.9108 | 0.9437 | 0.9640 | 0.8169 | 0.3099 | 0.1931 | 0.0987 | 0.8020 | 0.9045 | 0.9390 | 0.9601 | 0.8882 | 0.8685 | 0.8652 | |
|
| sup-SimCSE-VietNamese-phobert-base | 0.5540 | 0.7308 | 0.7981 | 0.8748 | 0.5540 | 0.2473 | 0.1621 | 0.0892 | 0.5446 | 0.7246 | 0.7903 | 0.8693 | 0.7068 | 0.6587 | 0.6592 | |
|
| halong_embedding (768) | 0.8294 | 0.9233 | 0.9437 | 0.9687 | 0.8294 | 0.3146 | 0.1931 | 0.0991 | 0.8146 | 0.9178 | 0.9390 | 0.9640 | 0.8976 | 0.8799 | 0.8763 | |
|
| halong_embedding (512) | 0.8138 | 0.9233 | 0.9390 | 0.9703 | 0.8138 | 0.3146 | 0.1922 | 0.0992 | 0.7989 | 0.9178 | 0.9343 | 0.9656 | 0.8917 | 0.8715 | 0.8678 | |
|
| halong_embedding (256) | 0.7934 | 0.8967 | 0.9280 | 0.9593 | 0.7934 | 0.3062 | 0.1900 | 0.0981 | 0.7786 | 0.8920 | 0.9233 | 0.9546 | 0.8743 | 0.8520 | 0.8489 | |
|
| halong_embedding (128) | 0.7840 | 0.8951 | 0.9264 | 0.9515 | 0.7840 | 0.3046 | 0.1894 | 0.0975 | 0.7707 | 0.8889 | 0.9210 | 0.9476 | 0.8669 | 0.8439 | 0.8412 | |
|
| halong_embedding (64) | 0.6980 | 0.8435 | 0.8920 | 0.9358 | 0.6980 | 0.2864 | 0.1815 | 0.0958 | 0.6854 | 0.8365 | 0.8842 | 0.9311 | 0.8145 | 0.7805 | 0.7775 | |
|
|
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
|
|
## Citation |
|
|
|
You can cite our work as below: |
|
|
|
```Plaintext |
|
@misc{HalongEmbedding, |
|
title={HalongEmbedding: A Vietnamese Text Embedding}, |
|
author={Ngo Hieu}, |
|
year={2024}, |
|
publisher={Huggingface}, |
|
} |
|
``` |
|
|
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |