File size: 13,912 Bytes
2058c90 1f6f34c 2058c90 b577760 2058c90 21ccb84 2058c90 21ccb84 2058c90 2e7b738 2058c90 e601e97 df24e57 4317218 df24e57 e601e97 df24e57 2058c90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
---
base_model: intfloat/multilingual-e5-base
datasets: []
language:
- vi
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Bóng đá có lợi ích gì cho sức khỏe?
sentences:
- Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền.
- Bóng đá là môn thể thao phổ biến nhất thế giới.
- Bóng đá có thể giúp bạn kết nối với nhiều người hơn.
model-index:
- name: Halong Embedding
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8294209702660407
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9233176838810642
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9436619718309859
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9687010954616588
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8294209702660407
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3145539906103286
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1931142410015649
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09906103286384975
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8145539906103286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9178403755868545
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9389671361502347
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9640062597809077
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8976041381292648
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.879893558884169
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8763179130484675
name: Cosine Map@100
---
# Halong Embedding
Halong Embedding is a Vietnamese text embedding focused on RAG and production efficiency:
- 📚 Trained on a in house dataset consist of approximately 100,000 examples of question and related documents
- 🪆 Trained with a Matryoshka loss, allowing you to truncate embeddings with minimal performance loss: smaller embeddings are faster to compare.
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
You can find eval, fine-tune scripts [here](https://github.com/AndrewNgo-ini/MiAI_HieuNgo_EmbedingFineTune/blob/main/TextEmbeddingMiAI_DEMO.ipynb) as well as my [seminar](https://www.youtube.com/watch?v=oUFyFjGnXXw&t=1s)
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) <!-- at revision d13f1b27baf31030b7fd040960d60d909913633f -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** vi-focused, multilingual
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
import torch
# Download from the 🤗 Hub
model = SentenceTransformer("hiieu/halong_embedding")
# Define query and documents
query = "Bóng đá có lợi ích gì cho sức khỏe?"
docs = [
"Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền.",
"Bóng đá là môn thể thao phổ biến nhất thế giới.",
"Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý.",
"Bóng đá có thể giúp bạn kết nối với nhiều người hơn.",
"Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí."
]
# Encode query and documents
query_embedding = model.encode([query])
doc_embeddings = model.encode(docs)
similarities = model.similarity(query_embedding, doc_embeddings).flatten()
# Sort documents by cosine similarity
sorted_indices = torch.argsort(similarities, descending=True)
sorted_docs = [docs[idx] for idx in sorted_indices]
sorted_scores = [similarities[idx].item() for idx in sorted_indices]
# Print sorted documents with their cosine scores
for doc, score in zip(sorted_docs, sorted_scores):
print(f"Document: {doc} - Cosine Similarity: {score:.4f}")
# Document: Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền. - Cosine Similarity: 0.7318
# Document: Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý. - Cosine Similarity: 0.6623
# Document: Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí. - Cosine Similarity: 0.6102
# Document: Bóng đá có thể giúp bạn kết nối với nhiều người hơn. - Cosine Similarity: 0.4988
# Document: Bóng đá là môn thể thao phổ biến nhất thế giới. - Cosine Similarity: 0.4828
```
### Matryoshka Embeddings Inference
```python
from sentence_transformers import SentenceTransformer
import torch.nn.functional as F
import torch
matryoshka_dim = 64
model = SentenceTransformer(
"hiieu/halong_embedding",
truncate_dim=matryoshka_dim,
)
# Define query and documents
query = "Bóng đá có lợi ích gì cho sức khỏe?"
docs = [
"Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền.",
"Bóng đá là môn thể thao phổ biến nhất thế giới.",
"Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý.",
"Bóng đá có thể giúp bạn kết nối với nhiều người hơn.",
"Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí."
]
# Encode query and documents
query_embedding = model.encode([query])
doc_embeddings = model.encode(docs)
similarities = model.similarity(query_embedding, doc_embeddings).flatten()
# Sort documents by cosine similarity
sorted_indices = torch.argsort(similarities, descending=True)
sorted_docs = [docs[idx] for idx in sorted_indices]
sorted_scores = [similarities[idx].item() for idx in sorted_indices]
# Print sorted documents with their cosine scores
for doc, score in zip(sorted_docs, sorted_scores):
print(f"Document: {doc} - Cosine Similarity: {score:.4f}")
# Document: Bóng đá giúp cải thiện sức khỏe tim mạch và tăng cường sức bền. - Cosine Similarity: 0.8045
# Document: Chơi bóng đá giúp giảm căng thẳng và cải thiện tâm lý. - Cosine Similarity: 0.7676
# Document: Bóng đá không chỉ là môn thể thao mà còn là cách để giải trí. - Cosine Similarity: 0.6758
# Document: Bóng đá có thể giúp bạn kết nối với nhiều người hơn. - Cosine Similarity: 0.5931
# Document: Bóng đá là môn thể thao phổ biến nhất thế giới. - Cosine Similarity: 0.5105
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: [Zalo legal retrieval dataet](https://huggingface.co/datasets/hiieu/legal_eval_label)
* *note*: We sampled 20% of the Zalo Legal train dataset for fast testing; our model did not train on this dataset.
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Model | Accuracy@1 | Accuracy@3 | Accuracy@5 | Accuracy@10 | Precision@1 | Precision@3 | Precision@5 | Precision@10 | Recall@1 | Recall@3 | Recall@5 | Recall@10 | NDCG@10 | MRR@10 | MAP@100 |
|----------------------|------------|------------|------------|-------------|-------------|--------------|--------------|---------------|-----------|-----------|-----------|------------|---------|--------|---------|
|
vietnamese-bi-encoder | 0.8169 | 0.9108 | 0.9437 | 0.9640 | 0.8169 | 0.3099 | 0.1931 | 0.0987 | 0.8020 | 0.9045 | 0.9390 | 0.9601 | 0.8882 | 0.8685 | 0.8652 |
| sup-SimCSE-VietNamese-phobert-base | 0.5540 | 0.7308 | 0.7981 | 0.8748 | 0.5540 | 0.2473 | 0.1621 | 0.0892 | 0.5446 | 0.7246 | 0.7903 | 0.8693 | 0.7068 | 0.6587 | 0.6592 |
| halong_embedding (768) | 0.8294 | 0.9233 | 0.9437 | 0.9687 | 0.8294 | 0.3146 | 0.1931 | 0.0991 | 0.8146 | 0.9178 | 0.9390 | 0.9640 | 0.8976 | 0.8799 | 0.8763 |
| halong_embedding (512) | 0.8138 | 0.9233 | 0.9390 | 0.9703 | 0.8138 | 0.3146 | 0.1922 | 0.0992 | 0.7989 | 0.9178 | 0.9343 | 0.9656 | 0.8917 | 0.8715 | 0.8678 |
| halong_embedding (256) | 0.7934 | 0.8967 | 0.9280 | 0.9593 | 0.7934 | 0.3062 | 0.1900 | 0.0981 | 0.7786 | 0.8920 | 0.9233 | 0.9546 | 0.8743 | 0.8520 | 0.8489 |
| halong_embedding (128) | 0.7840 | 0.8951 | 0.9264 | 0.9515 | 0.7840 | 0.3046 | 0.1894 | 0.0975 | 0.7707 | 0.8889 | 0.9210 | 0.9476 | 0.8669 | 0.8439 | 0.8412 |
| halong_embedding (64) | 0.6980 | 0.8435 | 0.8920 | 0.9358 | 0.6980 | 0.2864 | 0.1815 | 0.0958 | 0.6854 | 0.8365 | 0.8842 | 0.9311 | 0.8145 | 0.7805 | 0.7775 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Citation
You can cite our work as below:
```Plaintext
@misc{HalongEmbedding,
title={HalongEmbedding: A Vietnamese Text Embedding},
author={Ngo Hieu},
year={2024},
publisher={Huggingface},
}
```
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |