ktp-not-ktp-clip / README.md
habibi26's picture
Model save
e937fa5 verified
|
raw
history blame
2.61 kB
metadata
base_model: openai/clip-vit-base-patch32
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: ktp-not-ktp-clip
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9900990099009901

ktp-not-ktp-clip

This model is a fine-tuned version of openai/clip-vit-base-patch32 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0159
  • Accuracy: 0.9901

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 3 0.0256 0.9901
No log 1.8462 6 0.0514 0.9802
No log 2.7692 9 0.1041 0.9604
0.1234 4.0 13 0.0597 0.9802
0.1234 4.9231 16 0.0736 0.9802
0.1234 5.8462 19 0.1338 0.9802
0.0335 6.7692 22 0.1006 0.9802
0.0335 8.0 26 0.0856 0.9802
0.0335 8.9231 29 0.0410 0.9703
0.1078 9.8462 32 0.1247 0.9802
0.1078 10.7692 35 0.1851 0.9703
0.1078 12.0 39 0.0078 1.0
0.0526 12.9231 42 0.0127 0.9901
0.0526 13.8462 45 0.0159 0.9901

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1