ktp-not-ktp-clip

This model is a fine-tuned version of openai/clip-vit-base-patch32 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1267
  • Accuracy: 0.9890

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 7 0.5809 0.6374
No log 2.0 14 1.3401 0.6703
0.5558 3.0 21 0.6458 0.7692
0.5558 4.0 28 0.3785 0.8681
0.1701 5.0 35 0.3004 0.9451
0.1701 6.0 42 0.2204 0.9560
0.142 7.0 49 0.1483 0.9341
0.142 8.0 56 0.1386 0.9670
0.1002 9.0 63 0.7714 0.8681
0.1002 10.0 70 0.2285 0.9341
0.0956 11.0 77 0.1162 0.9780
0.0956 12.0 84 0.1104 0.9780
0.0004 13.0 91 0.1722 0.9780
0.0004 14.0 98 0.2109 0.9780
0.0209 15.0 105 0.3321 0.9560
0.0209 16.0 112 0.0785 0.9780
0.0209 17.0 119 0.1525 0.9670
0.0014 18.0 126 0.1436 0.9670
0.0014 19.0 133 0.2278 0.9670
0.0002 20.0 140 0.3035 0.9560
0.0002 21.0 147 0.1239 0.9780
0.001 22.0 154 0.1211 0.9890
0.001 23.0 161 0.1253 0.9890
0.0 24.0 168 0.1265 0.9890
0.0 25.0 175 0.1267 0.9890

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
51
Safetensors
Model size
87.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for habibi26/ktp-not-ktp-clip

Finetuned
(56)
this model

Evaluation results