hZzy's picture
End of training
6aa5baf verified
---
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- alignment-handbook
- ndcg
- trl
- expo
- generated_from_trainer
- trl
- expo
- generated_from_trainer
datasets:
- hZzy/train_pairwise
model-index:
- name: qwen2.5-0.5b-expo-DPO-EXPERIMENT-100-5e6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/ptp2yd12)
# qwen2.5-0.5b-expo-DPO-EXPERIMENT-100-5e6
This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on the hZzy/train_pairwise dataset.
It achieves the following results on the evaluation set:
- Loss: 153.9577
- Logps: -79.3234
- Logits: -1.1891
- Objective: 152.3114
- Dpo Loss: 152.3114
- Regularize: 152.3114
- Ranking Simple: 0.5227
- Ranking Idealized: 0.5093
- Ranking Idealized Expo: 0.5093
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 12
- total_train_batch_size: 288
- total_eval_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-----------------:|:----------------------:|
| 89.5677 | 0.2834 | 50 | 97.0098 | -93.4757 | -1.4670 | 103.5481 | 103.5481 | 103.5481 | 0.5072 | 0.5093 | 0.5093 |
| 102.7372 | 0.5668 | 100 | 164.4481 | -79.3850 | -1.4159 | 169.0837 | 169.0837 | 169.0837 | 0.5238 | 0.5093 | 0.5093 |
| 86.6457 | 0.8503 | 150 | 159.7297 | -80.3621 | -1.2164 | 155.2103 | 155.2103 | 155.2103 | 0.5279 | 0.5093 | 0.5093 |
| 40.1205 | 1.1337 | 200 | 164.8019 | -78.8446 | -1.1758 | 161.0171 | 161.0171 | 161.0171 | 0.5248 | 0.5093 | 0.5093 |
| 40.2475 | 1.4171 | 250 | 156.8958 | -80.0693 | -1.2420 | 156.9776 | 156.9776 | 156.9776 | 0.5279 | 0.5093 | 0.5093 |
| 24.0056 | 1.7005 | 300 | 154.3221 | -79.4678 | -1.1971 | 153.7111 | 153.7111 | 153.7111 | 0.5238 | 0.5093 | 0.5093 |
| 25.1496 | 1.9839 | 350 | 153.9577 | -79.3234 | -1.1891 | 152.3116 | 152.3116 | 152.3116 | 0.5227 | 0.5093 | 0.5093 |
### Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1