hZzy's picture
End of training
6aa5baf verified
metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
  - alignment-handbook
  - ndcg
  - trl
  - expo
  - generated_from_trainer
  - trl
  - expo
  - generated_from_trainer
datasets:
  - hZzy/train_pairwise
model-index:
  - name: qwen2.5-0.5b-expo-DPO-EXPERIMENT-100-5e6
    results: []

Visualize in Weights & Biases

qwen2.5-0.5b-expo-DPO-EXPERIMENT-100-5e6

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:

  • Loss: 153.9577
  • Logps: -79.3234
  • Logits: -1.1891
  • Objective: 152.3114
  • Dpo Loss: 152.3114
  • Regularize: 152.3114
  • Ranking Simple: 0.5227
  • Ranking Idealized: 0.5093
  • Ranking Idealized Expo: 0.5093

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple Ranking Idealized Ranking Idealized Expo
89.5677 0.2834 50 97.0098 -93.4757 -1.4670 103.5481 103.5481 103.5481 0.5072 0.5093 0.5093
102.7372 0.5668 100 164.4481 -79.3850 -1.4159 169.0837 169.0837 169.0837 0.5238 0.5093 0.5093
86.6457 0.8503 150 159.7297 -80.3621 -1.2164 155.2103 155.2103 155.2103 0.5279 0.5093 0.5093
40.1205 1.1337 200 164.8019 -78.8446 -1.1758 161.0171 161.0171 161.0171 0.5248 0.5093 0.5093
40.2475 1.4171 250 156.8958 -80.0693 -1.2420 156.9776 156.9776 156.9776 0.5279 0.5093 0.5093
24.0056 1.7005 300 154.3221 -79.4678 -1.1971 153.7111 153.7111 153.7111 0.5238 0.5093 0.5093
25.1496 1.9839 350 153.9577 -79.3234 -1.1891 152.3116 152.3116 152.3116 0.5227 0.5093 0.5093

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1