|
--- |
|
language: |
|
- tr |
|
datasets: |
|
- common_voice |
|
- movies |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: XLSR Wav2Vec2 Large Turkish with extended dataset by Gorkem Goknar |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice tr |
|
type: common_voice |
|
args: tr |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 50.41 |
|
--- |
|
# Wav2Vec2-Large-XLSR-53-Turkish |
|
|
|
Note: This model is trained with 5 Turkish movies additional to common voice dataset. |
|
Although WER is high (50%) per common voice test dataset, performance from "other sources " seems pretty good. |
|
|
|
Disclaimer: Please use another wav2vec2-tr model in hub for "clean environment" dialogues as they tend to do better in clean sounds with less background noise. |
|
|
|
Dataset building from csv and merging code can be found on below of this Readme. |
|
|
|
Please try speech yourself on the right side to see its performance. |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Turkish using the [Common Voice](https://huggingface.co/datasets/common_voice) and 5 Turkish movies that include background noise/talkers . |
|
|
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
## Usage |
|
The model can be used directly (without a language model) as follows: |
|
```python |
|
import torch |
|
import torchaudio |
|
import pydub |
|
from pydub.utils import mediainfo |
|
import array |
|
from pydub import AudioSegment |
|
from pydub.utils import get_array_type |
|
import numpy as np |
|
|
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") |
|
processor = Wav2Vec2Processor.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish") |
|
model = Wav2Vec2ForCTC.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish") |
|
|
|
|
|
|
|
new_sample_rate = 16000 |
|
|
|
def audio_resampler(batch, new_sample_rate = 16000): |
|
|
|
#not working without complex library compilation in windows for mp3 |
|
#speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
#speech_array, sampling_rate = librosa.load(batch["path"]) |
|
|
|
#sampling_rate = pydub.utils.info['sample_rate'] ##gets current samplerate |
|
|
|
sound = pydub.AudioSegment.from_file(file=batch["path"]) |
|
sampling_rate = new_sample_rate |
|
sound = sound.set_frame_rate(new_sample_rate) |
|
left = sound.split_to_mono()[0] |
|
bit_depth = left.sample_width * 8 |
|
array_type = pydub.utils.get_array_type(bit_depth) |
|
|
|
numeric_array = np.array(array.array(array_type, left._data) ) |
|
|
|
speech_array = torch.FloatTensor(numeric_array) |
|
|
|
batch["speech"] = numeric_array |
|
batch["sampling_rate"] = sampling_rate |
|
#batch["target_text"] = batch["sentence"] |
|
|
|
return batch |
|
|
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
batch = audio_resampler(batch, new_sample_rate = new_sample_rate) |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset["sentence"][:2]) |
|
``` |
|
|
|
## Evaluation |
|
The model can be evaluated as follows on the Turkish test data of Common Voice. |
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
import pydub |
|
import array |
|
import numpy as np |
|
|
|
test_dataset = load_dataset("common_voice", "tr", split="test") |
|
wer = load_metric("wer") |
|
processor = Wav2Vec2Processor.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish") |
|
model = Wav2Vec2ForCTC.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish") |
|
model.to("cuda") |
|
|
|
#Note: Not ignoring "'" on this one |
|
#Note: Not ignoring "'" on this one |
|
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\#\\>\\<\\_\\’\\[\\]\\{\\}]' |
|
|
|
|
|
#resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
#using custom load and transformer for audio -> see audio_resampler |
|
new_sample_rate = 16000 |
|
|
|
def audio_resampler(batch, new_sample_rate = 16000): |
|
|
|
#not working without complex library compilation in windows for mp3 |
|
#speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
#speech_array, sampling_rate = librosa.load(batch["path"]) |
|
#sampling_rate = pydub.utils.info['sample_rate'] ##gets current samplerate |
|
|
|
sound = pydub.AudioSegment.from_file(file=batch["path"]) |
|
|
|
sound = sound.set_frame_rate(new_sample_rate) |
|
left = sound.split_to_mono()[0] |
|
bit_depth = left.sample_width * 8 |
|
array_type = pydub.utils.get_array_type(bit_depth) |
|
|
|
numeric_array = np.array(array.array(array_type, left._data) ) |
|
|
|
speech_array = torch.FloatTensor(numeric_array) |
|
|
|
|
|
return speech_array, new_sample_rate |
|
|
|
def remove_special_characters(batch): |
|
|
|
##this one comes from subtitles if additional timestamps not processed -> 00:01:01 00:01:01,33 |
|
batch["sentence"] = re.sub('\\b\\d{2}:\\d{2}:\\d{2}(,+\\d{2})?\\b', ' ', batch["sentence"]) |
|
##remove all caps in text [AÇIKLAMA] etc, do it before.. |
|
batch["sentence"] = re.sub('\\[(\\b[A-Z]+\\])', '', batch["sentence"]) |
|
##replace three dots (that are inside string with single) |
|
batch["sentence"] = re.sub("([a-zA-Z]+)\\.\\.\\.", r"\\1.", batch["sentence"]) |
|
#standart ignore list |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " |
|
|
|
return batch |
|
|
|
|
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
new_sample_rate = 16000 |
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() |
|
##speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
##load and conversion done in resampler , takes and returns batch |
|
speech_array, sampling_rate = audio_resampler(batch, new_sample_rate = new_sample_rate) |
|
batch["speech"] = speech_array |
|
batch["sampling_rate"] = sampling_rate |
|
batch["target_text"] = batch["sentence"] |
|
|
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
# Preprocessing the datasets. |
|
# We need to read the aduio files as arrays |
|
def evaluate(batch): |
|
|
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
print("EVALUATING:") |
|
|
|
##for 8GB RAM on GPU best is batch_size 2 for windows, 4 may fit in linux only |
|
result = test_dataset.map(evaluate, batched=True, batch_size=2) |
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
|
|
``` |
|
|
|
**Test Result**: 50.41 % |
|
|
|
|
|
## Training |
|
|
|
|
|
The Common Voice `train` and `validation` datasets were used for training. Additional 5 Turkish movies with subtitles also used for training. |
|
Similar training model used as base fine-tuning, additional audio resampler is on above code. |
|
|
|
Putting model building and merging code below for reference |
|
|
|
|
|
```python |
|
import pandas as pd |
|
from datasets import load_dataset, load_metric |
|
|
|
import os |
|
from pathlib import Path |
|
from datasets import Dataset |
|
import csv |
|
|
|
#Walk all subdirectories of base_set_path and find csv files |
|
base_set_path = r'C:\\dataset_extracts' |
|
csv_files = [] |
|
for path, subdirs, files in os.walk(base_set_path): |
|
for name in files: |
|
if name.endswith(".csv"): |
|
deckfile= os.path.join(path, name) |
|
csv_files.append(deckfile) |
|
|
|
def get_dataset_from_csv_file(csvfilename,names=['sentence', 'path']): |
|
path = Path(csvfilename) |
|
csv_delimiter="\\t" ##tab seperated, change if something else |
|
|
|
##Pandas has bug reading non-ascii file names, make sure use open with encoding |
|
df=pd.read_csv(open(path, 'r', encoding='utf-8'), delimiter=csv_delimiter,header=None , names=names, encoding='utf8') |
|
return Dataset.from_pandas(df) |
|
|
|
custom_datasets= [] |
|
for csv_file in csv_files: |
|
this_dataset=get_dataset_from_csv_file(csv_file) |
|
custom_datasets.append(this_dataset) |
|
|
|
|
|
|
|
|
|
from datasets import concatenate_datasets, load_dataset |
|
from datasets import load_from_disk |
|
|
|
# Merge datasets together (from csv files) |
|
dataset_file_path = ".\\dataset_file" |
|
custom_datasets_concat = concatenate_datasets( [dset for dset in custom_datasets] ) |
|
|
|
#save this one to disk |
|
custom_datasets_concat.save_to_disk( dataset_file_path ) |
|
|
|
#load back from disk |
|
custom_datasets_from_disk = load_from_disk(dataset_file_path) |
|
``` |
|
|