File size: 9,070 Bytes
854cbad
 
 
 
 
ee893eb
854cbad
 
 
 
 
 
 
 
 
e7650c7
854cbad
 
 
 
 
 
 
 
 
 
 
ee893eb
854cbad
 
4d1fa17
ee893eb
329f311
 
d739c10
 
329f311
a8cb69e
ee893eb
4d1fa17
ee893eb
4d1fa17
854cbad
 
 
 
 
 
eea98ca
 
 
 
 
 
 
854cbad
 
 
d69a18a
 
eea98ca
 
 
ad33257
 
 
eea98ca
ad33257
eea98ca
 
 
ad33257
 
 
 
eea98ca
 
 
ad33257
eea98ca
 
 
 
 
 
ad33257
 
eea98ca
 
ad33257
eea98ca
854cbad
 
 
ad33257
cc4e759
ad33257
854cbad
 
 
cc4e759
854cbad
 
 
 
b2756ff
854cbad
 
 
 
 
 
 
 
0569c34
 
 
 
854cbad
 
5121291
 
854cbad
9505bbe
0569c34
 
d739c10
0dd7f50
0569c34
 
 
 
 
 
 
 
 
 
 
 
 
ee893eb
0569c34
 
 
 
 
 
 
 
 
ee893eb
 
0569c34
 
 
 
d739c10
0569c34
d739c10
0569c34
d739c10
0569c34
 
 
 
0dd7f50
0569c34
854cbad
 
ee893eb
854cbad
 
0569c34
 
ee893eb
 
 
 
 
854cbad
ee893eb
854cbad
 
 
 
0569c34
854cbad
 
 
 
 
 
0569c34
 
 
 
 
854cbad
0569c34
854cbad
ee893eb
4cadfa5
ee893eb
 
854cbad
ee893eb
 
329f311
ee893eb
 
329f311
ee893eb
 
 
 
 
 
 
 
 
 
 
 
d739c10
ee893eb
 
 
 
 
 
 
 
 
d739c10
ee893eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d739c10
ee893eb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
---
language: 
- tr
datasets:
- common_voice 
- movies
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Large Turkish with extended dataset by Gorkem Goknar 
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice tr
      type: common_voice
      args: tr
    metrics:
       - name: Test WER
         type: wer
         value: 50.41
---
# Wav2Vec2-Large-XLSR-53-Turkish

Note: This model is trained with 5 Turkish movies additional to common voice dataset.
Although WER is high (50%) per common voice test dataset,  performance from "other sources " seems pretty good.

Disclaimer: Please use another wav2vec2-tr model in hub for "clean environment" dialogues as they tend to do better in clean sounds with less background noise.

Dataset building from csv and merging code can be found on below of this Readme.

Please try speech yourself on the right side to see its performance.

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Turkish using the [Common Voice](https://huggingface.co/datasets/common_voice) and 5 Turkish movies that include background noise/talkers .

When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
import pydub 
from pydub.utils import mediainfo
import array
from pydub import AudioSegment
from pydub.utils import get_array_type
import numpy as np 

from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "tr", split="test[:2%]") 
processor = Wav2Vec2Processor.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish")
model = Wav2Vec2ForCTC.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish") 



new_sample_rate = 16000

def audio_resampler(batch, new_sample_rate = 16000):
    
    #not working without complex library compilation in windows for mp3
    #speech_array, sampling_rate = torchaudio.load(batch["path"])
    #speech_array, sampling_rate = librosa.load(batch["path"])

    #sampling_rate =  pydub.utils.info['sample_rate']  ##gets current samplerate
    
    sound = pydub.AudioSegment.from_file(file=batch["path"])
    sampling_rate = new_sample_rate
    sound = sound.set_frame_rate(new_sample_rate)
    left = sound.split_to_mono()[0]
    bit_depth = left.sample_width * 8
    array_type = pydub.utils.get_array_type(bit_depth)

    numeric_array = np.array(array.array(array_type, left._data) )

    speech_array = torch.FloatTensor(numeric_array)
    
    batch["speech"] = numeric_array
    batch["sampling_rate"] = sampling_rate
    #batch["target_text"] = batch["sentence"]

    return batch
    

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch = audio_resampler(batch, new_sample_rate = new_sample_rate)
    return batch
    
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```

## Evaluation
The model can be evaluated as follows on the Turkish test data of Common Voice. 
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import pydub 
import array
import numpy as np 

test_dataset = load_dataset("common_voice", "tr", split="test") 
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish") 
model = Wav2Vec2ForCTC.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish") 
model.to("cuda")

#Note: Not ignoring "'"  on this one 
#Note: Not ignoring "'"  on this one 
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\#\\>\\<\\_\\’\\[\\]\\{\\}]'


#resampler = torchaudio.transforms.Resample(48_000, 16_000)
#using custom load and transformer for audio  -> see audio_resampler
new_sample_rate = 16000

def audio_resampler(batch, new_sample_rate = 16000):
    
    #not working without complex library compilation in windows for mp3
    #speech_array, sampling_rate = torchaudio.load(batch["path"])
    #speech_array, sampling_rate = librosa.load(batch["path"])
    #sampling_rate =  pydub.utils.info['sample_rate']  ##gets current samplerate
    
    sound = pydub.AudioSegment.from_file(file=batch["path"])

    sound = sound.set_frame_rate(new_sample_rate)
    left = sound.split_to_mono()[0]
    bit_depth = left.sample_width * 8
    array_type = pydub.utils.get_array_type(bit_depth)

    numeric_array = np.array(array.array(array_type, left._data) )

    speech_array = torch.FloatTensor(numeric_array)
    
    
    return speech_array, new_sample_rate

def remove_special_characters(batch):

    ##this one comes from subtitles if additional timestamps not processed  -> 00:01:01   00:01:01,33
    batch["sentence"] = re.sub('\\b\\d{2}:\\d{2}:\\d{2}(,+\\d{2})?\\b', ' ', batch["sentence"])
    ##remove all caps in text [AÇIKLAMA] etc, do it before..
    batch["sentence"] = re.sub('\\[(\\b[A-Z]+\\])', '', batch["sentence"]) 
    ##replace three dots (that are inside string with single)
    batch["sentence"] = re.sub("([a-zA-Z]+)\\.\\.\\.", r"\\1.", batch["sentence"])
    #standart ignore list
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
    
    return batch

    
# Preprocessing the datasets.
# We need to read the aduio files as arrays
new_sample_rate = 16000
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() 
    ##speech_array, sampling_rate = torchaudio.load(batch["path"])
    ##load and conversion done in resampler , takes and returns batch
    speech_array, sampling_rate = audio_resampler(batch, new_sample_rate = new_sample_rate)
    batch["speech"] = speech_array
    batch["sampling_rate"] = sampling_rate
    batch["target_text"] = batch["sentence"]

    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):

    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

print("EVALUATING:")

##for 8GB RAM on GPU best is batch_size 2 for windows,  4 may fit in linux only
result = test_dataset.map(evaluate, batched=True, batch_size=2)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

```

**Test Result**: 50.41 %  


## Training


The Common Voice `train` and `validation` datasets were used for training. Additional 5 Turkish movies with subtitles also used for training.
Similar training model used as base fine-tuning, additional audio resampler is on above code.

Putting model building and merging code below for reference


```python
import pandas as pd 
from datasets import load_dataset, load_metric

import os 
from pathlib import Path
from datasets import Dataset
import csv

#Walk all subdirectories of base_set_path and find csv files
base_set_path = r'C:\\dataset_extracts'
csv_files = []
for path, subdirs, files in os.walk(base_set_path):
    for name in files:
        if name.endswith(".csv"):
            deckfile= os.path.join(path, name)
            csv_files.append(deckfile)

def get_dataset_from_csv_file(csvfilename,names=['sentence', 'path']):
  path = Path(csvfilename)
  csv_delimiter="\\t"  ##tab seperated, change if something else
  
  ##Pandas has bug reading non-ascii file names, make sure use open with encoding
  df=pd.read_csv(open(path, 'r', encoding='utf-8'), delimiter=csv_delimiter,header=None , names=names, encoding='utf8')
  return Dataset.from_pandas(df)

custom_datasets= []
for csv_file in csv_files:
  this_dataset=get_dataset_from_csv_file(csv_file) 
  custom_datasets.append(this_dataset)




from datasets import concatenate_datasets, load_dataset
from datasets import load_from_disk

# Merge datasets together (from csv files)
dataset_file_path = ".\\dataset_file"
custom_datasets_concat = concatenate_datasets( [dset for dset in custom_datasets] )

#save this one to disk
custom_datasets_concat.save_to_disk( dataset_file_path ) 

#load back from disk
custom_datasets_from_disk = load_from_disk(dataset_file_path)
```