gorkemgoknar commited on
Commit
ee893eb
·
1 Parent(s): 0dd7f50

Updated readme to give info on merging datasets

Browse files
Files changed (1) hide show
  1. README.md +76 -20
README.md CHANGED
@@ -3,6 +3,7 @@ language:
3
  - tr
4
  datasets:
5
  - common_voice
 
6
  metrics:
7
  - wer
8
  tags:
@@ -12,7 +13,7 @@ tags:
12
  - xlsr-fine-tuning-week
13
  license: apache-2.0
14
  model-index:
15
- - name: XLSR Wav2Vec2 Large Turkish by Gorkem Goknar
16
  results:
17
  - task:
18
  name: Speech Recognition
@@ -24,18 +25,17 @@ model-index:
24
  metrics:
25
  - name: Test WER
26
  type: wer
27
- value: TBD
28
  ---
29
  # Wav2Vec2-Large-XLSR-53-Turkish
30
 
31
- Note: Common voice Turkish data is no background noise voice only, slower than usual day speech dataset.
32
- In this model although Word Error rate for test is 50% it is agains Common Voice text.
33
 
34
- Please try speech yourself and see it is converting pretty good .
35
- I hope some news channels or movie producers lets use their data for test/training (I asked some no reply)
36
 
 
37
 
38
- Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Turkish using the [Common Voice](https://huggingface.co/datasets/common_voice).
39
  When using this model, make sure that your speech input is sampled at 16kHz.
40
  ## Usage
41
  The model can be used directly (without a language model) as follows:
@@ -132,11 +132,10 @@ def audio_resampler(batch, new_sample_rate = 16000):
132
  #not working without complex library compilation in windows for mp3
133
  #speech_array, sampling_rate = torchaudio.load(batch["path"])
134
  #speech_array, sampling_rate = librosa.load(batch["path"])
135
-
136
  #sampling_rate = pydub.utils.info['sample_rate'] ##gets current samplerate
137
 
138
  sound = pydub.AudioSegment.from_file(file=batch["path"])
139
- sampling_rate = new_sample_rate
140
  sound = sound.set_frame_rate(new_sample_rate)
141
  left = sound.split_to_mono()[0]
142
  bit_depth = left.sample_width * 8
@@ -146,23 +145,17 @@ def audio_resampler(batch, new_sample_rate = 16000):
146
 
147
  speech_array = torch.FloatTensor(numeric_array)
148
 
149
- batch["speech"] = numeric_array
150
- batch["sampling_rate"] = sampling_rate
151
- #batch["target_text"] = batch["sentence"]
152
-
153
- return batch
154
 
155
  def remove_special_characters(batch):
156
 
157
  ##this one comes from subtitles if additional timestamps not processed -> 00:01:01 00:01:01,33
158
  batch["sentence"] = re.sub('\b\d{2}:\d{2}:\d{2}(,+\d{2})?\b', ' ', batch["sentence"])
159
-
160
  ##remove all caps in text [AÇIKLAMA] etc, do it before..
161
  batch["sentence"] = re.sub('\[(\b[A-Z]+\])', '', batch["sentence"])
162
-
163
  ##replace three dots (that are inside string with single)
164
  batch["sentence"] = re.sub("([a-zA-Z]+)\.\.\.", r"\1.", batch["sentence"])
165
-
166
  #standart ignore list
167
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
168
 
@@ -171,12 +164,18 @@ def remove_special_characters(batch):
171
 
172
  # Preprocessing the datasets.
173
  # We need to read the aduio files as arrays
 
174
  def speech_file_to_array_fn(batch):
175
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
176
  ##speech_array, sampling_rate = torchaudio.load(batch["path"])
177
  ##load and conversion done in resampler , takes and returns batch
178
- batch = audio_resampler(batch, new_sample_rate = new_sample_rate)
 
 
 
 
179
  return batch
 
180
  test_dataset = test_dataset.map(speech_file_to_array_fn)
181
  # Preprocessing the datasets.
182
  # We need to read the aduio files as arrays
@@ -196,7 +195,64 @@ result = test_dataset.map(evaluate, batched=True, batch_size=2)
196
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
197
 
198
  ```
 
199
  **Test Result**: 50.41 %
 
 
200
  ## Training
201
- The Common Voice `train` and `validation` datasets were used for training. Additional 5 Turkish movies with subtitles also used.
202
- Training still continues...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  - tr
4
  datasets:
5
  - common_voice
6
+ - movies
7
  metrics:
8
  - wer
9
  tags:
 
13
  - xlsr-fine-tuning-week
14
  license: apache-2.0
15
  model-index:
16
+ - name: XLSR Wav2Vec2 Large Turkish by Gorkem Goknar
17
  results:
18
  - task:
19
  name: Speech Recognition
 
25
  metrics:
26
  - name: Test WER
27
  type: wer
28
+ value: 50.41
29
  ---
30
  # Wav2Vec2-Large-XLSR-53-Turkish
31
 
32
+ Note: This model is trained with 5 Turkish movies additional to common voice dataset.
33
+ Although WER is high (50%) per common voice test dataset, its recognition (with some letter errors) seems better.
34
 
35
+ Please try speech yourself on the right side to see its performance.
 
36
 
37
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Turkish using the [Common Voice](https://huggingface.co/datasets/common_voice) and 5 Turkish movies that include background noise/talkers .
38
 
 
39
  When using this model, make sure that your speech input is sampled at 16kHz.
40
  ## Usage
41
  The model can be used directly (without a language model) as follows:
 
132
  #not working without complex library compilation in windows for mp3
133
  #speech_array, sampling_rate = torchaudio.load(batch["path"])
134
  #speech_array, sampling_rate = librosa.load(batch["path"])
 
135
  #sampling_rate = pydub.utils.info['sample_rate'] ##gets current samplerate
136
 
137
  sound = pydub.AudioSegment.from_file(file=batch["path"])
138
+
139
  sound = sound.set_frame_rate(new_sample_rate)
140
  left = sound.split_to_mono()[0]
141
  bit_depth = left.sample_width * 8
 
145
 
146
  speech_array = torch.FloatTensor(numeric_array)
147
 
148
+
149
+ return speech_array, new_sample_rate
 
 
 
150
 
151
  def remove_special_characters(batch):
152
 
153
  ##this one comes from subtitles if additional timestamps not processed -> 00:01:01 00:01:01,33
154
  batch["sentence"] = re.sub('\b\d{2}:\d{2}:\d{2}(,+\d{2})?\b', ' ', batch["sentence"])
 
155
  ##remove all caps in text [AÇIKLAMA] etc, do it before..
156
  batch["sentence"] = re.sub('\[(\b[A-Z]+\])', '', batch["sentence"])
 
157
  ##replace three dots (that are inside string with single)
158
  batch["sentence"] = re.sub("([a-zA-Z]+)\.\.\.", r"\1.", batch["sentence"])
 
159
  #standart ignore list
160
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
161
 
 
164
 
165
  # Preprocessing the datasets.
166
  # We need to read the aduio files as arrays
167
+ new_sample_rate = 16000
168
  def speech_file_to_array_fn(batch):
169
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
170
  ##speech_array, sampling_rate = torchaudio.load(batch["path"])
171
  ##load and conversion done in resampler , takes and returns batch
172
+ speech_array, sampling_rate = audio_resampler(batch, new_sample_rate = new_sample_rate)
173
+ batch["speech"] = speech_array
174
+ batch["sampling_rate"] = sampling_rate
175
+ batch["target_text"] = batch["sentence"]
176
+
177
  return batch
178
+
179
  test_dataset = test_dataset.map(speech_file_to_array_fn)
180
  # Preprocessing the datasets.
181
  # We need to read the aduio files as arrays
 
195
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
196
 
197
  ```
198
+
199
  **Test Result**: 50.41 %
200
+
201
+
202
  ## Training
203
+
204
+
205
+ The Common Voice `train` and `validation` datasets were used for training. Additional 5 Turkish movies with subtitles also used for training.
206
+ Similar training model used as base fine-tuning, additional audio resampler is on above code.
207
+
208
+ Putting model building and merging code below for reference
209
+
210
+
211
+ ```python
212
+ import pandas as pd
213
+ from datasets import load_dataset, load_metric
214
+
215
+ import os
216
+ from pathlib import Path
217
+ from datasets import Dataset
218
+ import csv
219
+
220
+ #Walk all subdirectories of base_set_path and find csv files
221
+ base_set_path = r"C:\dataset_extracts\"
222
+
223
+ csv_files = []
224
+ for path, subdirs, files in os.walk(base_set_path):
225
+ for name in files:
226
+ if name.endswith(".csv"):
227
+ deckfile= os.path.join(path, name)
228
+ csv_files.append(deckfile)
229
+
230
+ def get_dataset_from_csv_file(csvfilename,names=['sentence', 'path']):
231
+ path = Path(csvfilename)
232
+ csv_delimiter="\t" ##tab seperated, change if something else
233
+
234
+ ##Pandas has bug reading non-ascii file names, make sure use open with encoding
235
+ df=pd.read_csv(open(path, 'r', encoding='utf-8'), delimiter=csv_delimiter,header=None , names=names, encoding='utf8')
236
+ return Dataset.from_pandas(df)
237
+
238
+ custom_datasets= []
239
+ for csv_file in csv_files:
240
+ this_dataset=get_dataset_from_csv_file(csv_file)
241
+ custom_datasets.append(this_dataset)
242
+
243
+
244
+
245
+
246
+ from datasets import concatenate_datasets, load_dataset
247
+ from datasets import load_from_disk
248
+
249
+ # Merge datasets together (from csv files)
250
+ dataset_file_path = ".\dataset_file"
251
+ custom_datasets_concat = concatenate_datasets( [dset for dset in custom_datasets] )
252
+
253
+ #save this one to disk
254
+ custom_datasets_concat.save_to_disk( dataset_file_path )
255
+
256
+ #load back from disk
257
+ custom_datasets_from_disk = load_from_disk(dataset_file_path)
258
+ ```