gorkemgoknar
commited on
Commit
·
ad33257
1
Parent(s):
0569c34
Update README.md
Browse files
README.md
CHANGED
@@ -49,39 +49,40 @@ model = Wav2Vec2ForCTC.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turk
|
|
49 |
|
50 |
|
51 |
|
52 |
-
|
|
|
|
|
53 |
|
54 |
-
|
55 |
#speech_array, sampling_rate = torchaudio.load(batch["path"])
|
56 |
#speech_array, sampling_rate = librosa.load(batch["path"])
|
57 |
|
58 |
-
#
|
59 |
-
|
|
|
|
|
60 |
sound = sound.set_frame_rate(new_sample_rate)
|
61 |
-
|
62 |
left = sound.split_to_mono()[0]
|
63 |
bit_depth = left.sample_width * 8
|
64 |
-
array_type = get_array_type(bit_depth)
|
65 |
|
66 |
numeric_array = np.array(array.array(array_type, left._data) )
|
67 |
|
68 |
-
#windows hack as torchaudio cannot read mp3
|
69 |
speech_array = torch.FloatTensor(numeric_array)
|
70 |
|
71 |
batch["speech"] = numeric_array
|
72 |
-
batch["sampling_rate"] =
|
73 |
-
batch["target_text"] = batch["sentence"]
|
74 |
|
75 |
return batch
|
76 |
-
|
77 |
-
resampler = audio_resampler(16000)
|
78 |
|
79 |
# Preprocessing the datasets.
|
80 |
# We need to read the aduio files as arrays
|
81 |
def speech_file_to_array_fn(batch):
|
82 |
-
|
83 |
-
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
84 |
return batch
|
|
|
85 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
86 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
87 |
with torch.no_grad():
|
@@ -99,12 +100,8 @@ import torchaudio
|
|
99 |
from datasets import load_dataset, load_metric
|
100 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
101 |
import re
|
102 |
-
import torch
|
103 |
import pydub
|
104 |
-
from pydub.utils import mediainfo
|
105 |
import array
|
106 |
-
from pydub import AudioSegment
|
107 |
-
from pydub.utils import get_array_type
|
108 |
import numpy as np
|
109 |
|
110 |
test_dataset = load_dataset("common_voice", "tr", split="test")
|
@@ -115,20 +112,12 @@ model.to("cuda")
|
|
115 |
|
116 |
#Note: Not ignoring "'" on this one
|
117 |
#Note: Not ignoring "'" on this one
|
118 |
-
chars_to_ignore_regex = '[
|
119 |
|
120 |
#resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
121 |
#using custom load and transformer for audio -> see audio_resampler
|
122 |
new_sample_rate = 16000
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
import torchaudio
|
127 |
-
import torch
|
128 |
-
import pydub
|
129 |
-
import array
|
130 |
-
import numpy as np
|
131 |
-
|
132 |
def audio_resampler(batch, new_sample_rate = 16000):
|
133 |
|
134 |
#not working without complex library compilation in windows for mp3
|
@@ -158,13 +147,13 @@ def audio_resampler(batch, new_sample_rate = 16000):
|
|
158 |
def remove_special_characters(batch):
|
159 |
|
160 |
##this one comes from subtitles if additional timestamps not processed -> 00:01:01 00:01:01,33
|
161 |
-
batch["sentence"] = re.sub('
|
162 |
|
163 |
##remove all caps in text [AÇIKLAMA] etc, do it before..
|
164 |
-
batch["sentence"] = re.sub('
|
165 |
|
166 |
##replace three dots (that are inside string with single)
|
167 |
-
batch["sentence"] = re.sub("([a-zA-Z]+)
|
168 |
|
169 |
#standart ignore list
|
170 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|
|
|
49 |
|
50 |
|
51 |
|
52 |
+
new_sample_rate = 16000
|
53 |
+
|
54 |
+
def audio_resampler(batch, new_sample_rate = 16000):
|
55 |
|
56 |
+
#not working without complex library compilation in windows for mp3
|
57 |
#speech_array, sampling_rate = torchaudio.load(batch["path"])
|
58 |
#speech_array, sampling_rate = librosa.load(batch["path"])
|
59 |
|
60 |
+
#sampling_rate = pydub.utils.info['sample_rate'] ##gets current samplerate
|
61 |
+
|
62 |
+
sound = pydub.AudioSegment.from_file(file=batch["path"])
|
63 |
+
sampling_rate = new_sample_rate
|
64 |
sound = sound.set_frame_rate(new_sample_rate)
|
|
|
65 |
left = sound.split_to_mono()[0]
|
66 |
bit_depth = left.sample_width * 8
|
67 |
+
array_type = pydub.utils.get_array_type(bit_depth)
|
68 |
|
69 |
numeric_array = np.array(array.array(array_type, left._data) )
|
70 |
|
|
|
71 |
speech_array = torch.FloatTensor(numeric_array)
|
72 |
|
73 |
batch["speech"] = numeric_array
|
74 |
+
batch["sampling_rate"] = sampling_rate
|
75 |
+
#batch["target_text"] = batch["sentence"]
|
76 |
|
77 |
return batch
|
78 |
+
|
|
|
79 |
|
80 |
# Preprocessing the datasets.
|
81 |
# We need to read the aduio files as arrays
|
82 |
def speech_file_to_array_fn(batch):
|
83 |
+
batch = audio_resampler(batch, new_sample_rate = new_sample_rate)
|
|
|
84 |
return batch
|
85 |
+
|
86 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
87 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
88 |
with torch.no_grad():
|
|
|
100 |
from datasets import load_dataset, load_metric
|
101 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
102 |
import re
|
|
|
103 |
import pydub
|
|
|
104 |
import array
|
|
|
|
|
105 |
import numpy as np
|
106 |
|
107 |
test_dataset = load_dataset("common_voice", "tr", split="test")
|
|
|
112 |
|
113 |
#Note: Not ignoring "'" on this one
|
114 |
#Note: Not ignoring "'" on this one
|
115 |
+
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\#\\>\\<\\_\\’\\[\\]\\{\\}]'
|
116 |
|
117 |
#resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
118 |
#using custom load and transformer for audio -> see audio_resampler
|
119 |
new_sample_rate = 16000
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
def audio_resampler(batch, new_sample_rate = 16000):
|
122 |
|
123 |
#not working without complex library compilation in windows for mp3
|
|
|
147 |
def remove_special_characters(batch):
|
148 |
|
149 |
##this one comes from subtitles if additional timestamps not processed -> 00:01:01 00:01:01,33
|
150 |
+
batch["sentence"] = re.sub('\\b\\d{2}:\\d{2}:\\d{2}(,+\\d{2})?\\b', ' ', batch["sentence"])
|
151 |
|
152 |
##remove all caps in text [AÇIKLAMA] etc, do it before..
|
153 |
+
batch["sentence"] = re.sub('\\[(\\b[A-Z]+\\])', '', batch["sentence"])
|
154 |
|
155 |
##replace three dots (that are inside string with single)
|
156 |
+
batch["sentence"] = re.sub("([a-zA-Z]+)\\.\\.\\.", r"\\1.", batch["sentence"])
|
157 |
|
158 |
#standart ignore list
|
159 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|