|
--- |
|
library_name: transformers |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- gokulsrinivasagan/processed_book_corpus-ld-5 |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilbert_lda_5_v1_book |
|
results: |
|
- task: |
|
name: Masked Language Modeling |
|
type: fill-mask |
|
dataset: |
|
name: gokulsrinivasagan/processed_book_corpus-ld-5 |
|
type: gokulsrinivasagan/processed_book_corpus-ld-5 |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7333895906515843 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert_lda_5_v1_book |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on the gokulsrinivasagan/processed_book_corpus-ld-5 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.5846 |
|
- Accuracy: 0.7334 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 96 |
|
- eval_batch_size: 96 |
|
- seed: 10 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 10000 |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-------:|:------:|:---------------:|:--------:| |
|
| 7.1144 | 0.4215 | 10000 | 6.9372 | 0.1643 | |
|
| 4.7967 | 0.8431 | 20000 | 4.3544 | 0.4792 | |
|
| 3.8152 | 1.2646 | 30000 | 3.5063 | 0.5921 | |
|
| 3.5801 | 1.6861 | 40000 | 3.2866 | 0.6241 | |
|
| 3.4416 | 2.1077 | 50000 | 3.1632 | 0.6409 | |
|
| 3.3557 | 2.5292 | 60000 | 3.0762 | 0.6544 | |
|
| 3.2898 | 2.9507 | 70000 | 3.0201 | 0.6625 | |
|
| 3.2439 | 3.3723 | 80000 | 2.9767 | 0.6697 | |
|
| 3.2059 | 3.7938 | 90000 | 2.9382 | 0.6752 | |
|
| 3.1715 | 4.2153 | 100000 | 2.9128 | 0.6798 | |
|
| 3.1509 | 4.6369 | 110000 | 2.8885 | 0.6834 | |
|
| 3.1256 | 5.0584 | 120000 | 2.8609 | 0.6874 | |
|
| 3.1038 | 5.4799 | 130000 | 2.8452 | 0.6902 | |
|
| 3.0895 | 5.9014 | 140000 | 2.8255 | 0.6932 | |
|
| 3.0671 | 6.3230 | 150000 | 2.8121 | 0.6954 | |
|
| 3.0596 | 6.7445 | 160000 | 2.7992 | 0.6978 | |
|
| 3.0371 | 7.1660 | 170000 | 2.7860 | 0.7002 | |
|
| 3.0289 | 7.5876 | 180000 | 2.7773 | 0.7014 | |
|
| 3.0178 | 8.0091 | 190000 | 2.7669 | 0.7029 | |
|
| 3.0064 | 8.4306 | 200000 | 2.7545 | 0.7053 | |
|
| 2.9931 | 8.8522 | 210000 | 2.7466 | 0.7063 | |
|
| 2.9905 | 9.2737 | 220000 | 2.7372 | 0.7076 | |
|
| 2.9751 | 9.6952 | 230000 | 2.7286 | 0.7091 | |
|
| 2.9645 | 10.1168 | 240000 | 2.7234 | 0.7108 | |
|
| 2.9627 | 10.5383 | 250000 | 2.7143 | 0.7116 | |
|
| 2.9517 | 10.9598 | 260000 | 2.7073 | 0.7128 | |
|
| 2.9439 | 11.3814 | 270000 | 2.7033 | 0.7135 | |
|
| 2.944 | 11.8029 | 280000 | 2.6944 | 0.7151 | |
|
| 2.9295 | 12.2244 | 290000 | 2.6887 | 0.7156 | |
|
| 2.9263 | 12.6460 | 300000 | 2.6823 | 0.7172 | |
|
| 2.9172 | 13.0675 | 310000 | 2.6772 | 0.7180 | |
|
| 2.9126 | 13.4890 | 320000 | 2.6722 | 0.7187 | |
|
| 2.9094 | 13.9106 | 330000 | 2.6684 | 0.7194 | |
|
| 2.9054 | 14.3321 | 340000 | 2.6614 | 0.7204 | |
|
| 2.8972 | 14.7536 | 350000 | 2.6573 | 0.7210 | |
|
| 2.8931 | 15.1751 | 360000 | 2.6545 | 0.7217 | |
|
| 2.8894 | 15.5967 | 370000 | 2.6468 | 0.7227 | |
|
| 2.8841 | 16.0182 | 380000 | 2.6425 | 0.7235 | |
|
| 2.8799 | 16.4397 | 390000 | 2.6386 | 0.7241 | |
|
| 2.8742 | 16.8613 | 400000 | 2.6370 | 0.7245 | |
|
| 2.8716 | 17.2828 | 410000 | 2.6301 | 0.7255 | |
|
| 2.8658 | 17.7043 | 420000 | 2.6268 | 0.7263 | |
|
| 2.8605 | 18.1259 | 430000 | 2.6263 | 0.7266 | |
|
| 2.8549 | 18.5474 | 440000 | 2.6233 | 0.7268 | |
|
| 2.8554 | 18.9689 | 450000 | 2.6175 | 0.7281 | |
|
| 2.8499 | 19.3905 | 460000 | 2.6141 | 0.7286 | |
|
| 2.8483 | 19.8120 | 470000 | 2.6111 | 0.7288 | |
|
| 2.8417 | 20.2335 | 480000 | 2.6082 | 0.7296 | |
|
| 2.8365 | 20.6551 | 490000 | 2.6040 | 0.7302 | |
|
| 2.8332 | 21.0766 | 500000 | 2.6011 | 0.7304 | |
|
| 2.8313 | 21.4981 | 510000 | 2.5988 | 0.7311 | |
|
| 2.8267 | 21.9197 | 520000 | 2.5971 | 0.7314 | |
|
| 2.8285 | 22.3412 | 530000 | 2.5954 | 0.7316 | |
|
| 2.8236 | 22.7627 | 540000 | 2.5944 | 0.7319 | |
|
| 2.8246 | 23.1843 | 550000 | 2.5907 | 0.7323 | |
|
| 2.8196 | 23.6058 | 560000 | 2.5883 | 0.7329 | |
|
| 2.8161 | 24.0273 | 570000 | 2.5877 | 0.7330 | |
|
| 2.8153 | 24.4488 | 580000 | 2.5842 | 0.7335 | |
|
| 2.8117 | 24.8704 | 590000 | 2.5848 | 0.7332 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.20.3 |
|
|