gokulsrinivasagan's picture
End of training
82487be verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
datasets:
  - gokulsrinivasagan/processed_book_corpus-ld-5
metrics:
  - accuracy
model-index:
  - name: distilbert_lda_5_v1_book
    results:
      - task:
          name: Masked Language Modeling
          type: fill-mask
        dataset:
          name: gokulsrinivasagan/processed_book_corpus-ld-5
          type: gokulsrinivasagan/processed_book_corpus-ld-5
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7333895906515843

distilbert_lda_5_v1_book

This model is a fine-tuned version of on the gokulsrinivasagan/processed_book_corpus-ld-5 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5846
  • Accuracy: 0.7334

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
7.1144 0.4215 10000 6.9372 0.1643
4.7967 0.8431 20000 4.3544 0.4792
3.8152 1.2646 30000 3.5063 0.5921
3.5801 1.6861 40000 3.2866 0.6241
3.4416 2.1077 50000 3.1632 0.6409
3.3557 2.5292 60000 3.0762 0.6544
3.2898 2.9507 70000 3.0201 0.6625
3.2439 3.3723 80000 2.9767 0.6697
3.2059 3.7938 90000 2.9382 0.6752
3.1715 4.2153 100000 2.9128 0.6798
3.1509 4.6369 110000 2.8885 0.6834
3.1256 5.0584 120000 2.8609 0.6874
3.1038 5.4799 130000 2.8452 0.6902
3.0895 5.9014 140000 2.8255 0.6932
3.0671 6.3230 150000 2.8121 0.6954
3.0596 6.7445 160000 2.7992 0.6978
3.0371 7.1660 170000 2.7860 0.7002
3.0289 7.5876 180000 2.7773 0.7014
3.0178 8.0091 190000 2.7669 0.7029
3.0064 8.4306 200000 2.7545 0.7053
2.9931 8.8522 210000 2.7466 0.7063
2.9905 9.2737 220000 2.7372 0.7076
2.9751 9.6952 230000 2.7286 0.7091
2.9645 10.1168 240000 2.7234 0.7108
2.9627 10.5383 250000 2.7143 0.7116
2.9517 10.9598 260000 2.7073 0.7128
2.9439 11.3814 270000 2.7033 0.7135
2.944 11.8029 280000 2.6944 0.7151
2.9295 12.2244 290000 2.6887 0.7156
2.9263 12.6460 300000 2.6823 0.7172
2.9172 13.0675 310000 2.6772 0.7180
2.9126 13.4890 320000 2.6722 0.7187
2.9094 13.9106 330000 2.6684 0.7194
2.9054 14.3321 340000 2.6614 0.7204
2.8972 14.7536 350000 2.6573 0.7210
2.8931 15.1751 360000 2.6545 0.7217
2.8894 15.5967 370000 2.6468 0.7227
2.8841 16.0182 380000 2.6425 0.7235
2.8799 16.4397 390000 2.6386 0.7241
2.8742 16.8613 400000 2.6370 0.7245
2.8716 17.2828 410000 2.6301 0.7255
2.8658 17.7043 420000 2.6268 0.7263
2.8605 18.1259 430000 2.6263 0.7266
2.8549 18.5474 440000 2.6233 0.7268
2.8554 18.9689 450000 2.6175 0.7281
2.8499 19.3905 460000 2.6141 0.7286
2.8483 19.8120 470000 2.6111 0.7288
2.8417 20.2335 480000 2.6082 0.7296
2.8365 20.6551 490000 2.6040 0.7302
2.8332 21.0766 500000 2.6011 0.7304
2.8313 21.4981 510000 2.5988 0.7311
2.8267 21.9197 520000 2.5971 0.7314
2.8285 22.3412 530000 2.5954 0.7316
2.8236 22.7627 540000 2.5944 0.7319
2.8246 23.1843 550000 2.5907 0.7323
2.8196 23.6058 560000 2.5883 0.7329
2.8161 24.0273 570000 2.5877 0.7330
2.8153 24.4488 580000 2.5842 0.7335
2.8117 24.8704 590000 2.5848 0.7332

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3