|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
base_model: gokulsrinivasagan/bert_base_lda_20_v1_book |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- spearmanr |
|
model-index: |
|
- name: bert_base_lda_20_v1_book_stsb |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE STSB |
|
type: glue |
|
args: stsb |
|
metrics: |
|
- name: Spearmanr |
|
type: spearmanr |
|
value: 0.8381999392722225 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_base_lda_20_v1_book_stsb |
|
|
|
This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_20_v1_book](https://huggingface.co/gokulsrinivasagan/bert_base_lda_20_v1_book) on the GLUE STSB dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6650 |
|
- Pearson: 0.8407 |
|
- Spearmanr: 0.8382 |
|
- Combined Score: 0.8394 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| |
|
| 2.8738 | 1.0 | 23 | 2.4670 | 0.1765 | 0.1748 | 0.1756 | |
|
| 1.4719 | 2.0 | 46 | 1.0280 | 0.7397 | 0.7404 | 0.7401 | |
|
| 0.9801 | 3.0 | 69 | 0.8276 | 0.7956 | 0.7954 | 0.7955 | |
|
| 0.783 | 4.0 | 92 | 0.7431 | 0.8197 | 0.8193 | 0.8195 | |
|
| 0.5677 | 5.0 | 115 | 0.9075 | 0.8135 | 0.8152 | 0.8144 | |
|
| 0.4407 | 6.0 | 138 | 0.7474 | 0.8267 | 0.8272 | 0.8269 | |
|
| 0.3821 | 7.0 | 161 | 0.6753 | 0.8391 | 0.8371 | 0.8381 | |
|
| 0.3036 | 8.0 | 184 | 0.8726 | 0.8246 | 0.8260 | 0.8253 | |
|
| 0.269 | 9.0 | 207 | 0.7331 | 0.8311 | 0.8293 | 0.8302 | |
|
| 0.2191 | 10.0 | 230 | 0.7562 | 0.8383 | 0.8368 | 0.8375 | |
|
| 0.1854 | 11.0 | 253 | 0.7022 | 0.8365 | 0.8343 | 0.8354 | |
|
| 0.1718 | 12.0 | 276 | 0.6650 | 0.8407 | 0.8382 | 0.8394 | |
|
| 0.1685 | 13.0 | 299 | 0.7270 | 0.8350 | 0.8333 | 0.8342 | |
|
| 0.1368 | 14.0 | 322 | 0.7532 | 0.8392 | 0.8376 | 0.8384 | |
|
| 0.1351 | 15.0 | 345 | 0.8710 | 0.8379 | 0.8379 | 0.8379 | |
|
| 0.1459 | 16.0 | 368 | 0.7801 | 0.8416 | 0.8398 | 0.8407 | |
|
| 0.106 | 17.0 | 391 | 0.6833 | 0.8393 | 0.8380 | 0.8387 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.20.3 |
|
|