gokulsrinivasagan's picture
End of training
e944e32 verified
|
raw
history blame
3.36 kB
metadata
library_name: transformers
language:
  - en
base_model: gokulsrinivasagan/bert_base_lda_20_v1_book
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - spearmanr
model-index:
  - name: bert_base_lda_20_v1_book_stsb
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE STSB
          type: glue
          args: stsb
        metrics:
          - name: Spearmanr
            type: spearmanr
            value: 0.8381999392722225

bert_base_lda_20_v1_book_stsb

This model is a fine-tuned version of gokulsrinivasagan/bert_base_lda_20_v1_book on the GLUE STSB dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6650
  • Pearson: 0.8407
  • Spearmanr: 0.8382
  • Combined Score: 0.8394

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Pearson Spearmanr Combined Score
2.8738 1.0 23 2.4670 0.1765 0.1748 0.1756
1.4719 2.0 46 1.0280 0.7397 0.7404 0.7401
0.9801 3.0 69 0.8276 0.7956 0.7954 0.7955
0.783 4.0 92 0.7431 0.8197 0.8193 0.8195
0.5677 5.0 115 0.9075 0.8135 0.8152 0.8144
0.4407 6.0 138 0.7474 0.8267 0.8272 0.8269
0.3821 7.0 161 0.6753 0.8391 0.8371 0.8381
0.3036 8.0 184 0.8726 0.8246 0.8260 0.8253
0.269 9.0 207 0.7331 0.8311 0.8293 0.8302
0.2191 10.0 230 0.7562 0.8383 0.8368 0.8375
0.1854 11.0 253 0.7022 0.8365 0.8343 0.8354
0.1718 12.0 276 0.6650 0.8407 0.8382 0.8394
0.1685 13.0 299 0.7270 0.8350 0.8333 0.8342
0.1368 14.0 322 0.7532 0.8392 0.8376 0.8384
0.1351 15.0 345 0.8710 0.8379 0.8379 0.8379
0.1459 16.0 368 0.7801 0.8416 0.8398 0.8407
0.106 17.0 391 0.6833 0.8393 0.8380 0.8387

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3