metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- bird-data
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-birds-finetuned-birds
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: bird-data
type: bird-data
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6918896321070234
swin-tiny-patch4-window7-224-finetuned-birds-finetuned-birds
This model is a fine-tuned version of gjuggler/swin-tiny-patch4-window7-224-finetuned-birds on the bird-data dataset. It achieves the following results on the evaluation set:
- Loss: 1.2646
- Accuracy: 0.6919
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0629 | 1.0 | 84 | 1.5111 | 0.6455 |
1.8561 | 2.0 | 168 | 1.3206 | 0.6747 |
1.686 | 3.0 | 252 | 1.2646 | 0.6919 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2