File size: 2,010 Bytes
f06cc8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- bird-data
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-birds-finetuned-birds
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: bird-data
type: bird-data
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6918896321070234
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-birds-finetuned-birds
This model is a fine-tuned version of [gjuggler/swin-tiny-patch4-window7-224-finetuned-birds](https://huggingface.co/gjuggler/swin-tiny-patch4-window7-224-finetuned-birds) on the bird-data dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2646
- Accuracy: 0.6919
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0629 | 1.0 | 84 | 1.5111 | 0.6455 |
| 1.8561 | 2.0 | 168 | 1.3206 | 0.6747 |
| 1.686 | 3.0 | 252 | 1.2646 | 0.6919 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2
|