license: cc-by-nc-4.0
library_name: transformers
tags:
- mergekit
- merge
base_model:
- mistralai/Mistral-7B-v0.1
- argilla/distilabeled-OpenHermes-2.5-Mistral-7B
- NeverSleep/Noromaid-7B-0.4-DPO
- senseable/WestLake-7B-v2
- mlabonne/AlphaMonarch-7B
model-index:
- name: WestLake_Noromaid_OpenHermes_neural-chatv0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: EQ-Bench
type: eq-bench
config: EQ-Bench
split: v2.1
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 77.19
name: self-reported
source:
url: https://github.com/EQ-bench/EQ-Bench
name: EQ-Bench v2.1
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.22
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.42
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.31
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 61.99
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.16
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.6
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1
name: Open LLM Leaderboard
WestMaid_HermesMonarchv0.1
This model benchmarks quite well compared to other 7b models, and has exceptional MT-Bench and EQ-Bench v2.1 scores, ranking higher than ChatGPT-3.5-turbo and Claude-1 in both tests, and Goliath-120b, and other 70B models in the latter .
This is a merge of pre-trained language models created using mergekit
Merge Details
Merge Method
This model was merged using the DARE TIES merge method using mistralai/Mistral-7B-v0.1 as a base. Density was chosen deterministically between the models chosen for this merge. After testing many densities, I settled on 0.58 for each of the chosen models as it returned the highest EQ-Bench score. Not much testing was done with the weights, but I thought that I'd try gradients. Conceptually, Westlake and a Distilled version of Open Heremes are heavier in the initial layers (guiding understanding, and thoughts), before Noromaid and AlphaMonarch come in to guide its wants, reasoning, and conversation.
Models Merged
The following models were included in the merge:
- mlabonne/AlphaMonarch-7B
- NeverSleep/Noromaid-7B-0.4-DPO
- senseable/WestLake-7B-v2
- argilla/distilabeled-OpenHermes-2.5-Mistral-7B
Configuration
The following YAML configuration was used to produce this model:
models:
- model: mistralai/Mistral-7B-v0.1
# No parameters necessary for base model
- model: senseable/WestLake-7B-v2
parameters:
density: 0.58
weight: [0.50, 0.40, 0.25, 0.05]
- model: NeverSleep/Noromaid-7B-0.4-DPO
parameters:
density: 0.58
weight: [0.05, 0.05, 0.25, 0.40]
- model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B
parameters:
density: 0.58
weight: [0.40, 0.50, 0.25, 0.05]
- model: mlabonne/AlphaMonarch-7B
parameters:
density: 0.58
weight: [0.05, 0.05, 0.25, 0.50]
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
Benchmark Testing
MT-Bench
EQ-Bench Leaderboard
Table of Benchmarks
MT-Bench | EQ-Bench v2.1 | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | |
---|---|---|---|---|---|---|---|---|---|
giraffe176/WestMaid_HermesMonarchv0.1 | 8.021875 | 77.19 (3 Shot, ooba) | 72.62 | 70.22 | 87.42 | 64.31 | 61.99 | 82.16 | 69.6 |
AlphaMonarch-7B | 7.928125 | 76.08 | 75.99 | 73.04 | 89.18 | 64.4 | 77.91 | 84.69 | 66.72 |
senseable/WestLake-7B-v2 | 78.7 | 74.68 | 73.04 | 88.65 | 64.71 | 67.06 | 86.98 | 67.63 | |
teknium/OpenHermes-2.5-Mistral-7B | 66.89 | 61.52 | 64.93 | 84.18 | 63.64 | 52.24 | 78.06 | 26.08 | |
NeverSleep/Noromaid-7B-0.4-DPO | 59.08 | 62.29 | 84.32 | 63.2 | 42.28 | 76.95 | 25.47 | ||
claude-v1 | 7.900000 | 76.83 | |||||||
gpt-3.5-turbo | 7.943750 | 71.74 | |||||||
(Paper) | (Paper) Leaderboard |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.62 |
AI2 Reasoning Challenge (25-Shot) | 70.22 |
HellaSwag (10-Shot) | 87.42 |
MMLU (5-Shot) | 64.31 |
TruthfulQA (0-shot) | 61.99 |
Winogrande (5-shot) | 82.16 |
GSM8k (5-shot) | 69.60 |