--- license: cc-by-nc-4.0 library_name: transformers tags: - mergekit - merge base_model: - mistralai/Mistral-7B-v0.1 - argilla/distilabeled-OpenHermes-2.5-Mistral-7B - NeverSleep/Noromaid-7B-0.4-DPO - senseable/WestLake-7B-v2 - mlabonne/AlphaMonarch-7B model-index: - name: WestLake_Noromaid_OpenHermes_neural-chatv0.1 results: - task: type: text-generation name: Text Generation dataset: name: EQ-Bench type: eq-bench config: EQ-Bench split: v2.1 args: num_few_shot: 3 metrics: - type: acc_norm value: 77.19 name: self-reported source: url: https://github.com/EQ-bench/EQ-Bench name: EQ-Bench v2.1 - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.22 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.42 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.31 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.99 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.16 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.6 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1 name: Open LLM Leaderboard --- # WestMaid_HermesMonarchv0.1 drawing This model benchmarks quite well compared to other 7b models, and has exceptional [MT-Bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) and [EQ-Bench v2.1](https://github.com/EQ-bench/EQ-Bench) scores, ranking higher than ChatGPT-3.5-turbo and Claude-1 in both tests, and Goliath-120b, and other 70B models in the latter . This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit) ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base. Density was chosen deterministically between the models chosen for this merge. After testing many densities, I settled on 0.58 for each of the chosen models as it returned the highest EQ-Bench score. Not much testing was done with the weights, but I thought that I'd try gradients. Conceptually, Westlake and a Distilled version of Open Heremes are heavier in the initial layers (guiding understanding, and thoughts), before Noromaid and AlphaMonarch come in to guide its wants, reasoning, and conversation. ### Models Merged The following models were included in the merge: * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) * [NeverSleep/Noromaid-7B-0.4-DPO](https://huggingface.co/NeverSleep/Noromaid-7B-0.4-DPO) * [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2) * [argilla/distilabeled-OpenHermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-OpenHermes-2.5-Mistral-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: mistralai/Mistral-7B-v0.1 # No parameters necessary for base model - model: senseable/WestLake-7B-v2 parameters: density: 0.58 weight: [0.50, 0.40, 0.25, 0.05] - model: NeverSleep/Noromaid-7B-0.4-DPO parameters: density: 0.58 weight: [0.05, 0.05, 0.25, 0.40] - model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B parameters: density: 0.58 weight: [0.40, 0.50, 0.25, 0.05] - model: mlabonne/AlphaMonarch-7B parameters: density: 0.58 weight: [0.05, 0.05, 0.25, 0.50] merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: bfloat16 ``` ## Benchmark Testing ### MT-Bench ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F655a9883cbbaec115c3fd6b3%2FH2BLoovTbLg8d8mtFSKYB.png) ### EQ-Bench Leaderboard drawing ### Table of Benchmarks | | MT-Bench | EQ-Bench v2.1 | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | |---------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------|---------|-------|-----------|-------|------------|------------|-------| | giraffe176/WestMaid_HermesMonarchv0.1 | 8.021875 | 77.19 (3 Shot, ooba) | 72.62 | 70.22 | 87.42 | 64.31 | 61.99 | 82.16 | 69.6 | | AlphaMonarch-7B | 7.928125 | 76.08 | 75.99 | 73.04 | 89.18 | 64.4 | 77.91 | 84.69 | 66.72 | | senseable/WestLake-7B-v2 | | 78.7 | 74.68 | 73.04 | 88.65 | 64.71 | 67.06 | 86.98 | 67.63 | | teknium/OpenHermes-2.5-Mistral-7B | | 66.89 | 61.52 | 64.93 | 84.18 | 63.64 | 52.24 | 78.06 | 26.08 | | NeverSleep/Noromaid-7B-0.4-DPO | | | 59.08 | 62.29 | 84.32 | 63.2 | 42.28 | 76.95 | 25.47 | | claude-v1 | 7.900000 | 76.83 | | | | | | | | | gpt-3.5-turbo | 7.943750 | 71.74 | | | | | | | | | | [(Paper)](https://arxiv.org/abs/2306.05685) | [(Paper)](https://arxiv.org/abs/2312.06281) [Leaderboard](https://eqbench.com/) | | | | | | | | # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_giraffe176__WestMaid_HermesMonarchv0.1) | Metric |Value| |---------------------------------|----:| |Avg. |72.62| |AI2 Reasoning Challenge (25-Shot)|70.22| |HellaSwag (10-Shot) |87.42| |MMLU (5-Shot) |64.31| |TruthfulQA (0-shot) |61.99| |Winogrande (5-shot) |82.16| |GSM8k (5-shot) |69.60|