TooT-PLM-P2S / README.md
ghazikhanihamed's picture
PLM-Secondary-Structure-Generation
7b63d40
metadata
license: cc-by-nc-sa-4.0
base_model: ElnaggarLab/ankh-base
tags:
  - generated_from_trainer
model-index:
  - name: TooT-PLM-P2S
    results: []

TooT-PLM-P2S

This model is a fine-tuned version of ElnaggarLab/ankh-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1451
  • Q3 Accuracy: 0.7122

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 24
  • total_eval_batch_size: 48
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Q3 Accuracy
0.2036 1.0 449 0.1943 0.5833
0.1686 2.0 899 0.1864 0.5688
0.1597 3.0 1349 0.1770 0.5774
0.159 4.0 1799 0.1740 0.6245
0.1503 5.0 2248 0.1731 0.6851
0.1479 6.0 2698 0.1670 0.5961
0.1447 7.0 3148 0.1617 0.5936
0.1395 8.0 3598 0.1550 0.6307
0.1298 9.0 4047 0.1481 0.5573
0.1187 9.98 4490 0.1451 0.7122

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1