TooT-PLM-P2S

This model is a fine-tuned version of ElnaggarLab/ankh-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1451
  • Q3 Accuracy: 0.7122

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 24
  • total_eval_batch_size: 48
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Q3 Accuracy
0.2036 1.0 449 0.1943 0.5833
0.1686 2.0 899 0.1864 0.5688
0.1597 3.0 1349 0.1770 0.5774
0.159 4.0 1799 0.1740 0.6245
0.1503 5.0 2248 0.1731 0.6851
0.1479 6.0 2698 0.1670 0.5961
0.1447 7.0 3148 0.1617 0.5936
0.1395 8.0 3598 0.1550 0.6307
0.1298 9.0 4047 0.1481 0.5573
0.1187 9.98 4490 0.1451 0.7122

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ghazikhanihamed/TooT-PLM-P2S

Finetuned
(1)
this model