g-assismoraes's picture
End of training
6dd7b72 verified
metadata
library_name: transformers
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: mdeberta-domain_fold4
    results: []

mdeberta-domain_fold4

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3705
  • Accuracy: 0.8552
  • Precision: 0.8128
  • Recall: 0.8276
  • F1: 0.8194

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.0349 1.0 19 0.9208 0.5931 0.8644 0.3333 0.2482
0.88 2.0 38 0.7011 0.5931 0.8644 0.3333 0.2482
0.68 3.0 57 0.6370 0.5931 0.8644 0.3333 0.2482
0.6179 4.0 76 0.5360 0.8 0.6860 0.6971 0.6459
0.4709 5.0 95 0.3949 0.8483 0.7967 0.7860 0.7852
0.3643 6.0 114 0.3526 0.8690 0.8279 0.8209 0.8236
0.2901 7.0 133 0.3713 0.8690 0.8269 0.8277 0.8242
0.2414 8.0 152 0.3506 0.8759 0.8394 0.8392 0.8374
0.1941 9.0 171 0.3766 0.8621 0.8206 0.8391 0.8290
0.1977 10.0 190 0.3705 0.8552 0.8128 0.8276 0.8194

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.3.1
  • Datasets 2.21.0
  • Tokenizers 0.20.1