g-assismoraes
commited on
End of training
Browse files- README.md +76 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: microsoft/mdeberta-v3-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
model-index:
|
13 |
+
- name: mdeberta-domain_fold4
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# mdeberta-domain_fold4
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.3705
|
25 |
+
- Accuracy: 0.8552
|
26 |
+
- Precision: 0.8128
|
27 |
+
- Recall: 0.8276
|
28 |
+
- F1: 0.8194
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2e-05
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 10
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
59 |
+
| 1.0349 | 1.0 | 19 | 0.9208 | 0.5931 | 0.8644 | 0.3333 | 0.2482 |
|
60 |
+
| 0.88 | 2.0 | 38 | 0.7011 | 0.5931 | 0.8644 | 0.3333 | 0.2482 |
|
61 |
+
| 0.68 | 3.0 | 57 | 0.6370 | 0.5931 | 0.8644 | 0.3333 | 0.2482 |
|
62 |
+
| 0.6179 | 4.0 | 76 | 0.5360 | 0.8 | 0.6860 | 0.6971 | 0.6459 |
|
63 |
+
| 0.4709 | 5.0 | 95 | 0.3949 | 0.8483 | 0.7967 | 0.7860 | 0.7852 |
|
64 |
+
| 0.3643 | 6.0 | 114 | 0.3526 | 0.8690 | 0.8279 | 0.8209 | 0.8236 |
|
65 |
+
| 0.2901 | 7.0 | 133 | 0.3713 | 0.8690 | 0.8269 | 0.8277 | 0.8242 |
|
66 |
+
| 0.2414 | 8.0 | 152 | 0.3506 | 0.8759 | 0.8394 | 0.8392 | 0.8374 |
|
67 |
+
| 0.1941 | 9.0 | 171 | 0.3766 | 0.8621 | 0.8206 | 0.8391 | 0.8290 |
|
68 |
+
| 0.1977 | 10.0 | 190 | 0.3705 | 0.8552 | 0.8128 | 0.8276 | 0.8194 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.46.0
|
74 |
+
- Pytorch 2.3.1
|
75 |
+
- Datasets 2.21.0
|
76 |
+
- Tokenizers 0.20.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1115271284
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5c214442b2e3c590160b09c6397efcdb1e77298fa3008d0286290afaa6a99c4
|
3 |
size 1115271284
|