|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-large |
|
datasets: |
|
- imdb |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: deberta-v3-large-imdb |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-v3-large-imdb |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the [imdb](https://huggingface.co/datasets/stanfordnlp/imdb) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1906 |
|
- Accuracy: 0.9646 |
|
- F1: 0.9645 |
|
- Precision: 0.9679 |
|
- Recall: 0.9610 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.2 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.2471 | 1.0 | 3125 | 0.2004 | 0.9487 | 0.9474 | 0.9710 | 0.9250 | |
|
| 0.2029 | 2.0 | 6250 | 0.1715 | 0.9603 | 0.9600 | 0.9664 | 0.9537 | |
|
| 0.0631 | 3.0 | 9375 | 0.2049 | 0.9566 | 0.9555 | 0.9793 | 0.9329 | |
|
| 0.0432 | 4.0 | 12500 | 0.1906 | 0.9646 | 0.9645 | 0.9679 | 0.9610 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.2 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|