--- license: mit base_model: microsoft/deberta-v3-large datasets: - imdb tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta-v3-large-imdb results: [] --- # deberta-v3-large-imdb This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the [imdb](https://huggingface.co/datasets/stanfordnlp/imdb) dataset. It achieves the following results on the evaluation set: - Loss: 0.1906 - Accuracy: 0.9646 - F1: 0.9645 - Precision: 0.9679 - Recall: 0.9610 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2471 | 1.0 | 3125 | 0.2004 | 0.9487 | 0.9474 | 0.9710 | 0.9250 | | 0.2029 | 2.0 | 6250 | 0.1715 | 0.9603 | 0.9600 | 0.9664 | 0.9537 | | 0.0631 | 3.0 | 9375 | 0.2049 | 0.9566 | 0.9555 | 0.9793 | 0.9329 | | 0.0432 | 4.0 | 12500 | 0.1906 | 0.9646 | 0.9645 | 0.9679 | 0.9610 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2