|
--- |
|
tags: |
|
- autotrain |
|
- vision |
|
- image-classification |
|
- lam |
|
datasets: |
|
- Livingwithmachines/MapReader_Data_SIGSPATIAL_2022 |
|
widget: |
|
- src: >- |
|
https://huggingface.co/davanstrien/autotrain-mapreader-5000-40830105612/resolve/main/1.png |
|
example_title: patch |
|
- src: >- |
|
https://huggingface.co/davanstrien/autotrain-mapreader-5000-40830105612/resolve/main/271.png |
|
example_title: patch |
|
co2_eq_emissions: |
|
emissions: 0.008077657735064319 |
|
pipeline_tag: image-classification |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
Image classification model trained to predict whether a patch of a historic map contains 'railspace' or not. See the [dataset](https://huggingface.co/datasets/Livingwithmachines/MapReader_Data_SIGSPATIAL_2022) used for training for more information on the labels. |
|
|
|
- Problem type: Multi-class Classification |
|
- Model ID: 40830105612 |
|
- CO2 Emissions (in grams): 0.0081 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.038 |
|
- Accuracy: 0.995 |
|
- Macro F1: 0.983 |
|
- Micro F1: 0.995 |
|
- Weighted F1: 0.995 |
|
- Macro Precision: 0.991 |
|
- Micro Precision: 0.995 |
|
- Weighted Precision: 0.995 |
|
- Macro Recall: 0.975 |
|
- Micro Recall: 0.995 |
|
- Weighted Recall: 0.995 |