File size: 1,139 Bytes
fc23d08
 
 
 
 
8abc7f4
fc23d08
22d36b4
fc23d08
22d36b4
 
4459d10
22d36b4
 
4459d10
fc23d08
 
8abc7f4
fc23d08
 
 
 
3cd4cdf
 
fc23d08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
tags:
- autotrain
- vision
- image-classification
- lam
datasets:
- Livingwithmachines/MapReader_Data_SIGSPATIAL_2022
widget:
- src: >-
    https://huggingface.co/davanstrien/autotrain-mapreader-5000-40830105612/resolve/main/1.png
  example_title: patch
- src: >-
    https://huggingface.co/davanstrien/autotrain-mapreader-5000-40830105612/resolve/main/271.png
  example_title: patch
co2_eq_emissions:
  emissions: 0.008077657735064319
pipeline_tag: image-classification
---

# Model Trained Using AutoTrain

Image classification model trained to predict whether a patch of a historic map contains 'railspace' or not. See the [dataset](https://huggingface.co/datasets/Livingwithmachines/MapReader_Data_SIGSPATIAL_2022) used for training for more information on the labels.

- Problem type: Multi-class Classification
- Model ID: 40830105612
- CO2 Emissions (in grams): 0.0081

## Validation Metrics

- Loss: 0.038
- Accuracy: 0.995
- Macro F1: 0.983
- Micro F1: 0.995
- Weighted F1: 0.995
- Macro Precision: 0.991
- Micro Precision: 0.995
- Weighted Precision: 0.995
- Macro Recall: 0.975
- Micro Recall: 0.995
- Weighted Recall: 0.995