|
--- |
|
language: |
|
- en |
|
library_name: transformers |
|
license: apache-2.0 |
|
tags: |
|
- mlx |
|
- mlx |
|
base_model: mlx-community/SmolLM-1.7B-Instruct-8bit |
|
datasets: |
|
- dattaraj/pc-insurance-cost-estimator |
|
--- |
|
|
|
# dattaraj/smol-lora-insurance-estimates |
|
|
|
The Model [dattaraj/smol-lora-insurance-estimates](https://huggingface.co/dattaraj/smol-lora-insurance-estimates) was converted to MLX format from [mlx-community/SmolLM-1.7B-Instruct-8bit](https://huggingface.co/mlx-community/SmolLM-1.7B-Instruct-8bit) using mlx-lm version **0.19.1**. |
|
This is a test to demonstrate the power of small langauge models. We take a SmoLM 1.7B model and fine-tune it on insurance estimation dataset available at: https://huggingface.co/datasets/dattaraj/pc-insurance-cost-estimator |
|
The fine-tuned language model is now expert at taking text description of damage and generating cost estimation. |
|
|
|
## Use with mlx |
|
|
|
```bash |
|
pip install mlx-lm |
|
``` |
|
|
|
```python |
|
from mlx_lm import load, generate |
|
|
|
model, tokenizer = load("dattaraj/smol-lora-insurance-estimates") |
|
|
|
prompt="hello" |
|
|
|
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: |
|
messages = [{"role": "user", "content": prompt}] |
|
prompt = tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
|
|
response = generate(model, tokenizer, prompt=prompt, verbose=True) |
|
``` |