--- language: - en library_name: transformers license: apache-2.0 tags: - mlx - mlx base_model: mlx-community/SmolLM-1.7B-Instruct-8bit datasets: - dattaraj/pc-insurance-cost-estimator --- # dattaraj/smol-lora-insurance-estimates The Model [dattaraj/smol-lora-insurance-estimates](https://huggingface.co/dattaraj/smol-lora-insurance-estimates) was converted to MLX format from [mlx-community/SmolLM-1.7B-Instruct-8bit](https://huggingface.co/mlx-community/SmolLM-1.7B-Instruct-8bit) using mlx-lm version **0.19.1**. This is a test to demonstrate the power of small langauge models. We take a SmoLM 1.7B model and fine-tune it on insurance estimation dataset available at: https://huggingface.co/datasets/dattaraj/pc-insurance-cost-estimator The fine-tuned language model is now expert at taking text description of damage and generating cost estimation. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("dattaraj/smol-lora-insurance-estimates") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```