instruction
stringclasses
2 values
input
stringlengths
0
1k
output
stringclasses
2 values
metadata
dict
Analyze this document content
These files were obtained from the creators of the AssistantBench benchmark and modified slightly. You can find the latest version at [https://huggingface.co/spaces/AssistantBench/leaderboard/tree/main/evaluation](https://huggingface.co/spaces/AssistantBench/leaderboard/tree/main/evaluation)
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/AssistantBench/Scripts/evaluate_utils/readme.md", "file_type": ".md", "source_type": "document" }
Analyze this code content
from typing import List, Set, Tuple, Union, Callable import numpy as np from scipy.optimize import linear_sum_assignment def _align_bags( predicted: List[Set[str]], gold: List[Set[str]], method: Callable[[object, object], float], ) -> List[float]: """ Takes gold and predicted answer sets and first finds the optimal 1-1 alignment between them and gets maximum metric values over all the answers. """ scores = np.zeros([len(gold), len(predicted)]) for gold_index, gold_item in enumerate(gold): for pred_index, pred_item in enumerate(predicted): scores[gold_index, pred_index] = method(pred_item, gold_item) row_ind, col_ind = linear_sum_assignment(-scores) max_scores = np.zeros([max(len(gold), len(predicted))]) for row, column in zip(row_ind, col_ind): max_scores[row] = max(max_scores[row], scores[row, column]) return max_scores
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/AssistantBench/Scripts/evaluate_utils/utils.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio import logging import os import re import tiktoken from openai import AzureOpenAI from typing import List from autogen_core import AgentId, AgentProxy, TopicId from autogen_core import SingleThreadedAgentRuntime from autogen_core.logging import EVENT_LOGGER_NAME from autogen_core.models import ( ChatCompletionClient, UserMessage, LLMMessage, ) from autogen_core import DefaultSubscription, DefaultTopicId from autogen_ext.code_executors.local import LocalCommandLineCodeExecutor from autogen_core.models import AssistantMessage from autogen_magentic_one.markdown_browser import MarkdownConverter, UnsupportedFormatException from autogen_magentic_one.agents.coder import Coder, Executor from autogen_magentic_one.agents.orchestrator import LedgerOrchestrator from autogen_magentic_one.messages import BroadcastMessage from autogen_magentic_one.agents.multimodal_web_surfer import MultimodalWebSurfer from autogen_magentic_one.agents.file_surfer import FileSurfer from
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/AssistantBench/Templates/MagenticOne/scenario.py", "file_type": ".py", "source_type": "code" }
Analyze this document content
# GAIA Benchmark This scenario implements the [GAIA](https://arxiv.org/abs/2311.12983) agent benchmark. Before you begin, make sure you have followed instruction in `../README.md` to prepare your environment. ### Setup Environment Variables for AgBench Navigate to GAIA ```bash cd benchmarks/GAIA ``` Create a file called ENV.json with the following (required) contents (If you're using MagenticOne) ```json { "BING_API_KEY": "REPLACE_WITH_YOUR_BING_API_KEY", "HOMEPAGE": "https://www.bing.com/", "WEB_SURFER_DEBUG_DIR": "/autogen/debug", "CHAT_COMPLETION_KWARGS_JSON": "{\"api_version\": \"2024-02-15-preview\", \"azure_endpoint\": \"YOUR_ENDPOINT/\", \"model_capabilities\": {\"function_calling\": true, \"json_output\": true, \"vision\": true}, \"azure_ad_token_provider\": \"DEFAULT\", \"model\": \"gpt-4o-2024-05-13\"}", "CHAT_COMPLETION_PROVIDER": "azure" } ``` You can also use the openai client by replacing the last two entries in the ENV file by: - `CHAT_COMPLET
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/GAIA/README.md", "file_type": ".md", "source_type": "document" }
Analyze this code content
import os import sys import re from agbench.tabulate_cmd import default_tabulate import json import pandas as pd import sqlite3 import glob import numpy as np EXCLUDE_DIR_NAMES = ["__pycache__"] def normalize_answer(a): # Lower case # Trim (left and right) # standardize comma separated values # Replace multiple spaces with one space # Remove trailing punctuation norm_answer = ", ".join(a.strip().lower().split(",")) norm_answer = re.sub(r"[\.\!\?]+$", "", re.sub(r"\s+", " ", norm_answer)) return norm_answer def scorer(instance_dir): # Read the expected answer expected_answer_file = os.path.join(instance_dir, "expected_answer.txt") if not os.path.isfile(expected_answer_file): return None expected_answer = None with open(expected_answer_file, "rt") as fh: expected_answer = fh.read().strip() # Read the console console_log_file = os.path.join(instance_dir, "console_log.txt") if not os.path.isfile(console_
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/GAIA/Scripts/custom_tabulate.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
# # Run this file to download the human_eval dataset, and create a corresponding testbed scenario: # (default: ../scenarios/human_eval_two_agents_gpt4.jsonl and ./scenarios/human_eval_two_agents_gpt35.jsonl) # import json import os import re import sys from huggingface_hub import snapshot_download SCRIPT_PATH = os.path.realpath(__file__) SCRIPT_NAME = os.path.basename(SCRIPT_PATH) SCRIPT_DIR = os.path.dirname(SCRIPT_PATH) SCENARIO_DIR = os.path.realpath(os.path.join(SCRIPT_DIR, os.path.pardir)) TEMPLATES_DIR = os.path.join(SCENARIO_DIR, "Templates") TASKS_DIR = os.path.join(SCENARIO_DIR, "Tasks") DOWNLOADS_DIR = os.path.join(SCENARIO_DIR, "Downloads") REPO_DIR = os.path.join(DOWNLOADS_DIR, "GAIA") def download_gaia(): """Download the GAIA benchmark from Hugging Face.""" if not os.path.isdir(DOWNLOADS_DIR): os.mkdir(DOWNLOADS_DIR) """Download the GAIA dataset from Hugging Face Hub""" snapshot_download( repo_id="gaia-benchmark/GAIA", repo_t
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/GAIA/Scripts/init_tasks.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio import logging import os import re import tiktoken from openai import AzureOpenAI from typing import List from autogen_core import AgentId, AgentProxy, TopicId from autogen_core import SingleThreadedAgentRuntime from autogen_core import EVENT_LOGGER_NAME from autogen_core.models import ( ChatCompletionClient, ModelCapabilities, UserMessage, LLMMessage, ) from autogen_core import DefaultSubscription, DefaultTopicId from autogen_ext.code_executors.local import LocalCommandLineCodeExecutor from autogen_core.models import AssistantMessage from autogen_magentic_one.markdown_browser import MarkdownConverter, UnsupportedFormatException from autogen_magentic_one.agents.coder import Coder, Executor from autogen_magentic_one.agents.orchestrator import LedgerOrchestrator from autogen_magentic_one.messages import BroadcastMessage from autogen_magentic_one.agents.multimodal_web_surfer import MultimodalWebSurfer from autogen_magentic_one.agents.file_surfer import F
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/GAIA/Templates/MagenticOne/scenario.py", "file_type": ".py", "source_type": "code" }
Analyze this document content
# HumanEval Benchmark This scenario implements a modified version of the [HumanEval](https://arxiv.org/abs/2107.03374) benchmark. Compared to the original benchmark, there are **two key differences** here: - A chat model rather than a completion model is used. - The agents get pass/fail feedback about their implementations, and can keep trying until they succeed or run out of tokens or turns. ## Running the tasks Navigate to HumanEval ```bash cd benchmarks/HumanEval ``` Create a file called ENV.json with the following (required) contents (If you're using MagenticOne) ```json { "CHAT_COMPLETION_KWARGS_JSON": "{\"api_version\": \"2024-02-15-preview\", \"azure_endpoint\": \"YOUR_ENDPOINT/\", \"model_capabilities\": {\"function_calling\": true, \"json_output\": true, \"vision\": true}, \"azure_ad_token_provider\": \"DEFAULT\", \"model\": \"gpt-4o-2024-05-13\"}", "CHAT_COMPLETION_PROVIDER": "azure" } ``` You can also use the openai client by replacing the last two entries i
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/HumanEval/README.md", "file_type": ".md", "source_type": "document" }
Analyze this code content
import os import sys from agbench.tabulate_cmd import default_tabulate def main(args): default_tabulate(args) if __name__ == "__main__" and __package__ is None: main(sys.argv)
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/HumanEval/Scripts/custom_tabulate.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
# # Run this file to download the human_eval dataset, and create a corresponding testbed scenario: # (default: ../scenarios/human_eval_two_agents_gpt4.jsonl and ./scenarios/human_eval_two_agents_gpt35.jsonl) # import base64 import gzip import io import json import os import re import requests URL = "https://github.com/openai/human-eval/raw/master/data/HumanEval.jsonl.gz" SCRIPT_PATH = os.path.realpath(__file__) SCRIPT_NAME = os.path.basename(SCRIPT_PATH) SCRIPT_DIR = os.path.dirname(SCRIPT_PATH) SCENARIO_DIR = os.path.realpath(os.path.join(SCRIPT_DIR, os.path.pardir)) TEMPLATES_DIR = os.path.join(SCENARIO_DIR, "Templates") TASKS_DIR = os.path.join(SCENARIO_DIR, "Tasks") # A selected subset of HumanEval problems to work with during development # Deprecated 2/5/2024 -- Use subsample instead REDUCED_SET = [ "HumanEval/2", "HumanEval/26", "HumanEval/32", "HumanEval/33", "HumanEval/36", "HumanEval/38", "HumanEval/41", "HumanEval/50", "HumanEval/56"
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/HumanEval/Scripts/init_tasks.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio import logging from autogen_core import AgentId, AgentProxy, TopicId from autogen_core import SingleThreadedAgentRuntime from autogen_core import EVENT_LOGGER_NAME from autogen_core import DefaultSubscription, DefaultTopicId from autogen_ext.code_executors.local import LocalCommandLineCodeExecutor from autogen_core.models import ( UserMessage, ) from autogen_magentic_one.agents.coder import Coder, Executor from autogen_magentic_one.agents.orchestrator import RoundRobinOrchestrator from autogen_magentic_one.messages import BroadcastMessage, OrchestrationEvent from autogen_magentic_one.utils import create_completion_client_from_env async def main() -> None: # Create the runtime. runtime = SingleThreadedAgentRuntime() # Create the AzureOpenAI client client = create_completion_client_from_env() # Register agents. await runtime.register( "Coder", lambda: Coder(model_client=client), subscriptions=lambda: [DefaultSubscri
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/HumanEval/Templates/MagenticOne/scenario.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
# Disable ruff linter for template files # ruff: noqa: F821 E722 import sys __TEST__ def run_tests(candidate): try: check(candidate) # We can search for this string in the output print("ALL TESTS PASSED !#!#") except AssertionError: sys.exit("SOME TESTS FAILED - TRY AGAIN !#!#")
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/HumanEval/Templates/MagenticOne/unit_tests.py", "file_type": ".py", "source_type": "code" }
Analyze this document content
# WebArena Benchmark This scenario implements the [WebArena](https://github.com/web-arena-x/webarena/tree/main) benchmark. The evaluation code has been modified from WebArena in [evaluation_harness](Templates/Common/evaluation_harness) we retain the License from WebArena and include it here [LICENSE](Templates/Common/evaluation_harness/LICENSE). ## References Zhou, Shuyan, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng et al. "Webarena: A realistic web environment for building autonomous agents." arXiv preprint arXiv:2307.13854 (2023).
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/WebArena/README.md", "file_type": ".md", "source_type": "document" }
Analyze this code content
import os import sys import re from agbench.tabulate_cmd import default_tabulate def scorer(instance_dir): # Read the console console_log_file = os.path.join(instance_dir, "console_log.txt") if not os.path.isfile(console_log_file): return None console_log = "" with open(console_log_file, "rt") as fh: console_log = fh.read() final_score = None m = re.search(r"FINAL SCORE:(.*?)\n", console_log, re.DOTALL) if m: final_score = m.group(1).strip() # Missing the final answer line if final_score is None: return None else: return float(final_score) > 0 def main(args): default_tabulate(args, scorer=scorer) if __name__ == "__main__" and __package__ is None: main(sys.argv)
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/WebArena/Scripts/custom_tabulate.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
# # Run this file to download the human_eval dataset, and create a corresponding testbed scenario: # (default: ../scenarios/human_eval_two_agents_gpt4.jsonl and ./scenarios/human_eval_two_agents_gpt35.jsonl) # import requests import tarfile import hashlib import io import json import os import re import sys URL = "https://raw.githubusercontent.com/web-arena-x/webarena/main/config_files/test.raw.json" SCRIPT_PATH = os.path.realpath(__file__) SCRIPT_NAME = os.path.basename(SCRIPT_PATH) SCRIPT_DIR = os.path.dirname(SCRIPT_PATH) SCENARIO_DIR = os.path.realpath(os.path.join(SCRIPT_DIR, os.path.pardir)) TEMPLATES_DIR = os.path.join(SCENARIO_DIR, "Templates") TASKS_DIR = os.path.join(SCENARIO_DIR, "Tasks") DOWNLOADS_DIR = os.path.join(SCENARIO_DIR, "Downloads") def download(): """Download the WebArena dataset (if not already downloaded). Return a JSON list of problem instances.""" if not os.path.isdir(DOWNLOADS_DIR): os.mkdir(DOWNLOADS_DIR) json_file = os.path.
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/WebArena/Scripts/init_tasks.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from .evaluators import * from .helper_functions import ( shopping_get_latest_order_url, shopping_get_sku_latest_review_author, shopping_get_sku_latest_review_rating, )
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/WebArena/Templates/Common/evaluation_harness/__init__.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
# websites domain import os REDDIT = os.environ.get("REDDIT", "") SHOPPING = os.environ.get("SHOPPING", "") SHOPPING_ADMIN = os.environ.get("SHOPPING_ADMIN", "") GITLAB = os.environ.get("GITLAB", "") WIKIPEDIA = os.environ.get("WIKIPEDIA", "") MAP = os.environ.get("MAP", "") HOMEPAGE = os.environ.get("HOMEPAGE", "") REDDIT_USERNAME = os.environ.get("REDDIT_USERNAME", "") REDDIT_PASSWORD = os.environ.get("REDDIT_PASSWORD", "") GITLAB_USERNAME = os.environ.get("GITLAB_USERNAME", "") GITLAB_PASSWORD = os.environ.get("GITLAB_PASSWORD", "") SHOPPING_USERNAME = os.environ.get("SHOPPING_USERNAME", "") SHOPPING_PASSWORD = os.environ.get("SHOPPING_PASSWORD", "") SHOPPING_ADMIN_USERNAME = os.environ.get("SHOPPING_ADMIN_USERNAME", "") SHOPPING_ADMIN_PASSWORD = os.environ.get("SHOPPING_ADMIN_PASSWORD", "") assert REDDIT and SHOPPING and SHOPPING_ADMIN and GITLAB and WIKIPEDIA and MAP and HOMEPAGE, ( "Please setup the URLs to each site. Current: \n" + f"Reddit: {REDDIT}\n" + f"Sho
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/WebArena/Templates/Common/evaluation_harness/env_config.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
"""From WebArena. base class for evaluation""" # answer string match import collections import html import importlib import json import time import urllib import inspect from pathlib import Path from typing import Any, Tuple, Union, TypedDict, Dict from beartype import beartype from nltk.tokenize import word_tokenize # type: ignore from playwright.async_api import CDPSession, Page import numpy as np import numpy.typing as npt from .helper_functions import ( PseudoPage, gitlab_get_project_memeber_role, llm_fuzzy_match, llm_ua_match, reddit_get_post_url, shopping_get_latest_order_url, shopping_get_sku_latest_review_author, shopping_get_sku_latest_review_rating, ) # Subset used for evaluation (added by: adamfo) ##################################################################### class Action(TypedDict): answer: str Observation = str | npt.NDArray[np.uint8] class StateInfo(TypedDict): observation: dict[str, Observation] info: Dict[str
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/WebArena/Templates/Common/evaluation_harness/evaluators.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
"""From WebArena with minor modifications. Implements helper functions to assist evaluation cases where other evaluators are not suitable.""" import json from typing import Any from urllib.parse import urlparse import requests from playwright.async_api import Page from .env_config import ( ACCOUNTS, GITLAB, MAP, REDDIT, SHOPPING, SHOPPING_ADMIN, WIKIPEDIA, ) from .openai_utils import ( generate_from_openai_chat_completion, ) import autogen def shopping_get_auth_token() -> str: response = requests.post( url=f"{SHOPPING}/rest/default/V1/integration/admin/token", headers={"content-type": "application/json"}, data=json.dumps( { "username": ACCOUNTS["shopping_site_admin"]["username"], "password": ACCOUNTS["shopping_site_admin"]["password"], } ), ) token: str = response.json() return token def shopping_get_latest_order_url() -> str: """Get the l
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/WebArena/Templates/Common/evaluation_harness/helper_functions.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
"""Tools to generate from OpenAI prompts. Adopted from https://github.com/zeno-ml/zeno-build/""" import asyncio import logging import os import random import time from typing import Any import aiolimiter import openai from openai import AsyncOpenAI, OpenAI client = None aclient = None if "OPENAI_API_KEY" not in os.environ and "OAI_CONFIG_LIST" not in os.environ: raise ValueError("Neither OPENAI_API_KEY nor OAI_CONFIG_LIST is defined in the environment.") if "OPENAI_API_KEY" in os.environ: client = OpenAI(api_key=os.environ["OPENAI_API_KEY"]) aclient = AsyncOpenAI(api_key=os.environ["OPENAI_API_KEY"]) from tqdm.asyncio import tqdm_asyncio def retry_with_exponential_backoff( # type: ignore func, initial_delay: float = 1, exponential_base: float = 2, jitter: bool = True, max_retries: int = 3, errors: tuple[Any] = ( openai.RateLimitError, openai.BadRequestError, openai.InternalServerError, ), ): """Retry a function
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/WebArena/Templates/Common/evaluation_harness/openai_utils.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio import logging import json import os import re import nltk from typing import Any, Dict, List, Tuple, Union from autogen_core import AgentId, AgentProxy, TopicId from autogen_core import SingleThreadedAgentRuntime from autogen_core import EVENT_LOGGER_NAME from autogen_core import DefaultSubscription, DefaultTopicId from autogen_ext.code_executors.local import LocalCommandLineCodeExecutor from autogen_core.models import ( ChatCompletionClient, UserMessage, SystemMessage, LLMMessage, ) from autogen_magentic_one.markdown_browser import MarkdownConverter, UnsupportedFormatException from autogen_magentic_one.agents.coder import Coder, Executor from autogen_magentic_one.agents.orchestrator import RoundRobinOrchestrator, LedgerOrchestrator from autogen_magentic_one.messages import BroadcastMessage, OrchestrationEvent, RequestReplyMessage, ResetMessage, DeactivateMessage from autogen_magentic_one.agents.multimodal_web_surfer import MultimodalWebSurfer from aut
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/benchmarks/WebArena/Templates/MagenticOne/scenario.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from .version import __version__
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/src/agbench/__init__.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from .cli import main if __name__ == "__main__": main()
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/src/agbench/__main__.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import sys from typing import Callable, List, Optional, Sequence from typing_extensions import TypedDict from .remove_missing_cmd import remove_missing_cli from .run_cmd import run_cli from .tabulate_cmd import tabulate_cli from .version import __version__ class CommandSpec(TypedDict): command: str description: str function: Optional[Callable[[Sequence[str]], None]] def main(args: Optional[List[str]] = None) -> None: if args is None: args = sys.argv[:] # Shallow copy invocation_cmd = "autogenbench" version_string = f"AutoGenBench version {__version__}" commands: List[CommandSpec] = [ { "command": "run", "description": "run a given benchmark configuration", "function": run_cli, }, { "command": "tabulate", "description": "tabulate the results of a previous run", "function": tabulate_cli, }, { "command": "remove_missing",
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/src/agbench/cli.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import importlib.util import os import sys from types import ModuleType def load_module(module_path: str) -> ModuleType: module_name = os.path.basename(module_path).replace(".py", "") spec = importlib.util.spec_from_file_location(module_name, module_path) if spec is None: raise ValueError(f"Could not load module from path: {module_path}") module = importlib.util.module_from_spec(spec) sys.modules[module_name] = module assert spec.loader is not None spec.loader.exec_module(module) return module
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/src/agbench/load_module.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import argparse import os import shutil import sys from typing import Sequence def default_scorer(instance_dir: str) -> bool: """ returns True if the instance_dir has the expected ending pattern in the console_log.txt file """ console_log = os.path.join(instance_dir, "console_log.txt") if os.path.isfile(console_log): with open(console_log, "rt") as fh: content = fh.read() # Use a regular expression to match the expected ending pattern has_final_answer = "FINAL ANSWER:" in content has_scenario_complete = "SCENARIO.PY COMPLETE !#!#" in content has_run_complete = "RUN.SH COMPLETE !#!#" in content # if so, return False last_10_lines = content.splitlines()[-10:] last_10_lines_joined = "\n".join(last_10_lines) has_error_in_last_10_lines = "Error code" in last_10_lines_joined has_all = has_final_answer and has_scenario_complete and has_run_compl
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/src/agbench/remove_missing_cmd.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import argparse import errno import json import logging import os import pathlib import random import shutil import subprocess import sys import time import traceback from multiprocessing import Pool from typing import Any, Callable, Dict, List, Mapping, Optional, Sequence, Tuple, Union, cast import docker from azure.core.exceptions import ClientAuthenticationError from azure.identity import DefaultAzureCredential, get_bearer_token_provider from docker.errors import APIError, DockerException, ImageNotFound from typing_extensions import TypedDict from .version import __version__ # Figure out where everything is SCRIPT_PATH = os.path.realpath(__file__) SCRIPT_NAME = os.path.basename(SCRIPT_PATH) SCRIPT_DIR = os.path.dirname(SCRIPT_PATH) TASK_TIMEOUT = 60 * 120 # 120 minutes BASE_TEMPLATE_PATH = os.path.join(SCRIPT_DIR, "template") RESOURCES_PATH = os.path.join(SCRIPT_DIR, "res") # What platform are we running? IS_WIN32 = sys.platform == "win32" # This is the tag given to the imag
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/src/agbench/run_cmd.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import argparse import os import sys from copy import deepcopy from typing import Any, Callable, List, Optional, Sequence, Tuple import tabulate as tb from .load_module import load_module # Figure out where everything is SCRIPT_PATH = os.path.realpath(__file__) SCRIPT_NAME = os.path.basename(SCRIPT_PATH) SCRIPT_DIR = os.path.dirname(SCRIPT_PATH) TABULATE_FILE = "custom_tabulate.py" SUCCESS_STRINGS = [ "ALL TESTS PASSED !#!#", ] EXCLUDE_DIR_NAMES = ["__pycache__"] def find_tabulate_module(search_dir: str, stop_dir: Optional[str] = None) -> Optional[str]: """Hunt for the tabulate script.""" search_dir = os.path.abspath(search_dir) if not os.path.isdir(search_dir): raise ValueError(f"'{search_dir}' is not a directory.") stop_dir = None if stop_dir is None else os.path.abspath(stop_dir) while True: path = os.path.join(search_dir, TABULATE_FILE) if os.path.isfile(path): return path path = os.path.join(search_dir
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/src/agbench/tabulate_cmd.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
__version__ = "0.0.1a1"
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/agbench/src/agbench/version.py", "file_type": ".py", "source_type": "code" }
Analyze this document content
# AutoGen AgentChat - [Documentation](https://microsoft.github.io/autogen/dev/user-guide/agentchat-user-guide/index.html)
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/README.md", "file_type": ".md", "source_type": "document" }
Analyze this code content
""" This module provides the main entry point for the autogen_agentchat package. It includes logger names for trace and event logs, and retrieves the package version. """ import importlib.metadata TRACE_LOGGER_NAME = "autogen_agentchat" """Logger name for trace logs.""" EVENT_LOGGER_NAME = "autogen_agentchat.events" """Logger name for event logs.""" __version__ = importlib.metadata.version("autogen_agentchat")
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/__init__.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
""" This module defines various message types used for agent-to-agent communication. Each message type inherits either from the BaseChatMessage class or BaseAgentEvent class and includes specific fields relevant to the type of message being sent. """ from abc import ABC from typing import List, Literal from autogen_core import FunctionCall, Image from autogen_core.models import FunctionExecutionResult, RequestUsage from pydantic import BaseModel, ConfigDict, Field from typing_extensions import Annotated, deprecated class BaseMessage(BaseModel, ABC): """Base class for all message types.""" source: str """The name of the agent that sent this message.""" models_usage: RequestUsage | None = None """The model client usage incurred when producing this message.""" model_config = ConfigDict(arbitrary_types_allowed=True) class BaseChatMessage(BaseMessage, ABC): """Base class for chat messages.""" pass class BaseAgentEvent(BaseMessage, ABC): """Bas
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/messages.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
""" This module initializes various pre-defined agents provided by the package. BaseChatAgent is the base class for all agents in AgentChat. """ from ._assistant_agent import AssistantAgent, Handoff # type: ignore from ._base_chat_agent import BaseChatAgent from ._code_executor_agent import CodeExecutorAgent from ._coding_assistant_agent import CodingAssistantAgent from ._society_of_mind_agent import SocietyOfMindAgent from ._tool_use_assistant_agent import ToolUseAssistantAgent from ._user_proxy_agent import UserProxyAgent __all__ = [ "BaseChatAgent", "AssistantAgent", "Handoff", "CodeExecutorAgent", "CodingAssistantAgent", "ToolUseAssistantAgent", "SocietyOfMindAgent", "UserProxyAgent", ]
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/agents/__init__.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio import json import logging import warnings from typing import ( Any, AsyncGenerator, Awaitable, Callable, Dict, List, Mapping, Sequence, ) from autogen_core import CancellationToken, FunctionCall from autogen_core.model_context import ( ChatCompletionContext, UnboundedChatCompletionContext, ) from autogen_core.models import ( AssistantMessage, ChatCompletionClient, FunctionExecutionResult, FunctionExecutionResultMessage, SystemMessage, UserMessage, ) from autogen_core.tools import FunctionTool, Tool from typing_extensions import deprecated from .. import EVENT_LOGGER_NAME from ..base import Handoff as HandoffBase from ..base import Response from ..messages import ( AgentEvent, ChatMessage, HandoffMessage, MultiModalMessage, TextMessage, ToolCallExecutionEvent, ToolCallRequestEvent, ToolCallSummaryMessage, ) from ..state import AssistantAgentState from ._base_chat_agent impor
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/agents/_assistant_agent.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from abc import ABC, abstractmethod from typing import Any, AsyncGenerator, List, Mapping, Sequence from autogen_core import CancellationToken from ..base import ChatAgent, Response, TaskResult from ..messages import ( AgentEvent, BaseChatMessage, ChatMessage, TextMessage, ) from ..state import BaseState class BaseChatAgent(ChatAgent, ABC): """Base class for a chat agent. This abstract class provides a base implementation for a :class:`ChatAgent`. To create a new chat agent, subclass this class and implement the :meth:`on_messages`, :meth:`on_reset`, and :attr:`produced_message_types`. If streaming is required, also implement the :meth:`on_messages_stream` method. An agent is considered stateful and maintains its state between calls to the :meth:`on_messages` or :meth:`on_messages_stream` methods. The agent should store its state in the agent instance. The agent should also implement the :meth:`on_reset` method to reset the
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/agents/_base_chat_agent.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import re from typing import List, Sequence from autogen_core import CancellationToken from autogen_core.code_executor import CodeBlock, CodeExecutor from ..base import Response from ..messages import ChatMessage, TextMessage from ._base_chat_agent import BaseChatAgent def _extract_markdown_code_blocks(markdown_text: str) -> List[CodeBlock]: pattern = re.compile(r"```(?:\s*([\w\+\-]+))?\n([\s\S]*?)```") matches = pattern.findall(markdown_text) code_blocks: List[CodeBlock] = [] for match in matches: language = match[0].strip() if match[0] else "" code_content = match[1] code_blocks.append(CodeBlock(code=code_content, language=language)) return code_blocks class CodeExecutorAgent(BaseChatAgent): """An agent that extracts and executes code snippets found in received messages and returns the output. It is typically used within a team with another agent that generates code snippets to be executed. .. note:: It is recom
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/agents/_code_executor_agent.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import warnings from autogen_core.models import ( ChatCompletionClient, ) from ._assistant_agent import AssistantAgent class CodingAssistantAgent(AssistantAgent): """[DEPRECATED] An agent that provides coding assistance using an LLM model client. It responds with a StopMessage when 'terminate' is detected in the response. """ def __init__( self, name: str, model_client: ChatCompletionClient, *, description: str = "A helpful and general-purpose AI assistant that has strong language skills, Python skills, and Linux command line skills.", system_message: str = """You are a helpful AI assistant. Solve tasks using your coding and language skills. In the following cases, suggest python code (in a python coding block) or shell script (in a sh coding block) for the user to execute. 1. When you need to collect info, use the code to output the info you need, for example, browse or search the web, download/read a file,
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/agents/_coding_assistant_agent.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from typing import Any, AsyncGenerator, List, Mapping, Sequence from autogen_core import CancellationToken from autogen_core.models import ChatCompletionClient, LLMMessage, SystemMessage, UserMessage from autogen_agentchat.base import Response from autogen_agentchat.state import SocietyOfMindAgentState from ..base import TaskResult, Team from ..messages import ( AgentEvent, BaseChatMessage, ChatMessage, TextMessage, ) from ._base_chat_agent import BaseChatAgent class SocietyOfMindAgent(BaseChatAgent): """An agent that uses an inner team of agents to generate responses. Each time the agent's :meth:`on_messages` or :meth:`on_messages_stream` method is called, it runs the inner team of agents and then uses the model client to generate a response based on the inner team's messages. Once the response is generated, the agent resets the inner team by calling :meth:`Team.reset`. Args: name (str): The name of the agent. team (Te
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/agents/_society_of_mind_agent.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import logging import warnings from typing import Any, Awaitable, Callable, List from autogen_core.models import ( ChatCompletionClient, ) from autogen_core.tools import Tool from .. import EVENT_LOGGER_NAME from ._assistant_agent import AssistantAgent event_logger = logging.getLogger(EVENT_LOGGER_NAME) class ToolUseAssistantAgent(AssistantAgent): """[DEPRECATED] An agent that provides assistance with tool use. It responds with a StopMessage when 'terminate' is detected in the response. Args: name (str): The name of the agent. model_client (ChatCompletionClient): The model client to use for inference. registered_tools (List[Tool | Callable[..., Any] | Callable[..., Awaitable[Any]]): The tools to register with the agent. description (str, optional): The description of the agent. system_message (str, optional): The system message for the model. """ def __init__( self, name: str, model_client:
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/agents/_tool_use_assistant_agent.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio from inspect import iscoroutinefunction from typing import Awaitable, Callable, Optional, Sequence, Union, cast from aioconsole import ainput # type: ignore from autogen_core import CancellationToken from ..base import Response from ..messages import ChatMessage, HandoffMessage, TextMessage from ._base_chat_agent import BaseChatAgent # Define input function types more precisely SyncInputFunc = Callable[[str], str] AsyncInputFunc = Callable[[str, Optional[CancellationToken]], Awaitable[str]] InputFuncType = Union[SyncInputFunc, AsyncInputFunc] # TODO: ainput doesn't seem to play nicely with jupyter. # No input window appears in this case. async def cancellable_input(prompt: str, cancellation_token: Optional[CancellationToken]) -> str: task: asyncio.Task[str] = asyncio.create_task(ainput(prompt)) # type: ignore if cancellation_token is not None: cancellation_token.link_future(task) return await task class UserProxyAgent(BaseChatAgent):
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/agents/_user_proxy_agent.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from ._chat_agent import ChatAgent, Response from ._handoff import Handoff from ._task import TaskResult, TaskRunner from ._team import Team from ._termination import TerminatedException, TerminationCondition __all__ = [ "ChatAgent", "Response", "Team", "TerminatedException", "TerminationCondition", "TaskResult", "TaskRunner", "Handoff", ]
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/base/__init__.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from dataclasses import dataclass from typing import Any, AsyncGenerator, Mapping, Protocol, Sequence, runtime_checkable from autogen_core import CancellationToken from ..messages import AgentEvent, ChatMessage from ._task import TaskRunner @dataclass(kw_only=True) class Response: """A response from calling :meth:`ChatAgent.on_messages`.""" chat_message: ChatMessage """A chat message produced by the agent as the response.""" inner_messages: Sequence[AgentEvent | ChatMessage] | None = None """Inner messages produced by the agent, they can be :class:`AgentEvent` or :class:`ChatMessage`.""" @runtime_checkable class ChatAgent(TaskRunner, Protocol): """Protocol for a chat agent.""" @property def name(self) -> str: """The name of the agent. This is used by team to uniquely identify the agent. It should be unique within the team.""" ... @property def description(self) -> str: """The description of the agent.
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/base/_chat_agent.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import logging from typing import Any, Dict from autogen_core.tools import FunctionTool, Tool from pydantic import BaseModel, Field, model_validator from .. import EVENT_LOGGER_NAME event_logger = logging.getLogger(EVENT_LOGGER_NAME) class Handoff(BaseModel): """Handoff configuration.""" target: str """The name of the target agent to handoff to.""" description: str = Field(default="") """The description of the handoff such as the condition under which it should happen and the target agent's ability. If not provided, it is generated from the target agent's name.""" name: str = Field(default="") """The name of this handoff configuration. If not provided, it is generated from the target agent's name.""" message: str = Field(default="") """The message to the target agent. If not provided, it is generated from the target agent's name.""" @model_validator(mode="before") @classmethod def set_defaults(cls, values: Dict[str, Any]
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/base/_handoff.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from dataclasses import dataclass from typing import AsyncGenerator, Protocol, Sequence from autogen_core import CancellationToken from ..messages import AgentEvent, ChatMessage @dataclass class TaskResult: """Result of running a task.""" messages: Sequence[AgentEvent | ChatMessage] """Messages produced by the task.""" stop_reason: str | None = None """The reason the task stopped.""" class TaskRunner(Protocol): """A task runner.""" async def run( self, *, task: str | ChatMessage | Sequence[ChatMessage] | None = None, cancellation_token: CancellationToken | None = None, ) -> TaskResult: """Run the task and return the result. The task can be a string, a single message, or a sequence of messages. The runner is stateful and a subsequent call to this method will continue from where the previous call left off. If the task is not specified, the runner will continue with the curre
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/base/_task.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from typing import Any, Mapping, Protocol from ._task import TaskRunner class Team(TaskRunner, Protocol): async def reset(self) -> None: """Reset the team and all its participants to its initial state.""" ... async def save_state(self) -> Mapping[str, Any]: """Save the current state of the team.""" ... async def load_state(self, state: Mapping[str, Any]) -> None: """Load the state of the team.""" ...
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/base/_team.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio from abc import ABC, abstractmethod from typing import List, Sequence from ..messages import AgentEvent, ChatMessage, StopMessage class TerminatedException(BaseException): ... class TerminationCondition(ABC): """A stateful condition that determines when a conversation should be terminated. A termination condition is a callable that takes a sequence of ChatMessage objects since the last time the condition was called, and returns a StopMessage if the conversation should be terminated, or None otherwise. Once a termination condition has been reached, it must be reset before it can be used again. Termination conditions can be combined using the AND and OR operators. Example: .. code-block:: python import asyncio from autogen_agentchat.conditions import MaxMessageTermination, TextMentionTermination async def main() -> None: # Terminate the conversation after 10 turns or if the
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/base/_termination.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
""" This module provides various termination conditions for controlling the behavior of multi-agent teams. """ from ._terminations import ( ExternalTermination, HandoffTermination, MaxMessageTermination, SourceMatchTermination, StopMessageTermination, TextMentionTermination, TimeoutTermination, TokenUsageTermination, ) __all__ = [ "MaxMessageTermination", "TextMentionTermination", "StopMessageTermination", "TokenUsageTermination", "HandoffTermination", "TimeoutTermination", "ExternalTermination", "SourceMatchTermination", ]
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/conditions/__init__.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import time from typing import List, Sequence from ..base import TerminatedException, TerminationCondition from ..messages import AgentEvent, ChatMessage, HandoffMessage, MultiModalMessage, StopMessage class StopMessageTermination(TerminationCondition): """Terminate the conversation if a StopMessage is received.""" def __init__(self) -> None: self._terminated = False @property def terminated(self) -> bool: return self._terminated async def __call__(self, messages: Sequence[AgentEvent | ChatMessage]) -> StopMessage | None: if self._terminated: raise TerminatedException("Termination condition has already been reached") for message in messages: if isinstance(message, StopMessage): self._terminated = True return StopMessage(content="Stop message received", source="StopMessageTermination") return None async def reset(self) -> None: self._terminated = False
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/conditions/_terminations.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
"""State management for agents, teams and termination conditions.""" from ._states import ( AssistantAgentState, BaseGroupChatManagerState, BaseState, ChatAgentContainerState, MagenticOneOrchestratorState, RoundRobinManagerState, SelectorManagerState, SocietyOfMindAgentState, SwarmManagerState, TeamState, ) __all__ = [ "BaseState", "AssistantAgentState", "BaseGroupChatManagerState", "ChatAgentContainerState", "RoundRobinManagerState", "SelectorManagerState", "SwarmManagerState", "MagenticOneOrchestratorState", "TeamState", "SocietyOfMindAgentState", ]
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/state/__init__.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from typing import Annotated, Any, List, Mapping, Optional from pydantic import BaseModel, Field from ..messages import ( AgentEvent, ChatMessage, ) # Ensures pydantic can distinguish between types of events & messages. _AgentMessage = Annotated[AgentEvent | ChatMessage, Field(discriminator="type")] class BaseState(BaseModel): """Base class for all saveable state""" type: str = Field(default="BaseState") version: str = Field(default="1.0.0") class AssistantAgentState(BaseState): """State for an assistant agent.""" llm_context: Mapping[str, Any] = Field(default_factory=lambda: dict([("messages", [])])) type: str = Field(default="AssistantAgentState") class TeamState(BaseState): """State for a team of agents.""" agent_states: Mapping[str, Any] = Field(default_factory=dict) team_id: str = Field(default="") type: str = Field(default="TeamState") class BaseGroupChatManagerState(BaseState): """Base state for all group chat man
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/state/_states.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from typing import AsyncGenerator, TypeVar from typing_extensions import deprecated from ..base import Response, TaskResult from ..conditions import ( ExternalTermination as ExternalTerminationAlias, ) from ..conditions import ( HandoffTermination as HandoffTerminationAlias, ) from ..conditions import ( MaxMessageTermination as MaxMessageTerminationAlias, ) from ..conditions import ( SourceMatchTermination as SourceMatchTerminationAlias, ) from ..conditions import ( StopMessageTermination as StopMessageTerminationAlias, ) from ..conditions import ( TextMentionTermination as TextMentionTerminationAlias, ) from ..conditions import ( TimeoutTermination as TimeoutTerminationAlias, ) from ..conditions import ( TokenUsageTermination as TokenUsageTerminationAlias, ) from ..messages import AgentEvent, ChatMessage from ..ui import Console as ConsoleAlias @deprecated("Moved to autogen_agentchat.conditions.ExternalTermination. Will remove this in 0.4.0.", stack
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/task/__init__.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
""" This module provides implementation of various pre-defined multi-agent teams. Each team inherits from the BaseGroupChat class. """ from ._group_chat._base_group_chat import BaseGroupChat from ._group_chat._magentic_one import MagenticOneGroupChat from ._group_chat._round_robin_group_chat import RoundRobinGroupChat from ._group_chat._selector_group_chat import SelectorGroupChat from ._group_chat._swarm_group_chat import Swarm __all__ = [ "BaseGroupChat", "RoundRobinGroupChat", "SelectorGroupChat", "Swarm", "MagenticOneGroupChat", ]
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/teams/__init__.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/teams/_group_chat/__init__.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio import logging import uuid from abc import ABC, abstractmethod from typing import Any, AsyncGenerator, Callable, List, Mapping, Sequence from autogen_core import ( AgentId, AgentInstantiationContext, AgentRuntime, AgentType, CancellationToken, ClosureAgent, MessageContext, SingleThreadedAgentRuntime, TypeSubscription, ) from autogen_core._closure_agent import ClosureContext from ... import EVENT_LOGGER_NAME from ...base import ChatAgent, TaskResult, Team, TerminationCondition from ...messages import AgentEvent, BaseChatMessage, ChatMessage, TextMessage from ...state import TeamState from ._chat_agent_container import ChatAgentContainer from ._events import GroupChatMessage, GroupChatReset, GroupChatStart, GroupChatTermination from ._sequential_routed_agent import SequentialRoutedAgent event_logger = logging.getLogger(EVENT_LOGGER_NAME) class BaseGroupChat(Team, ABC): """The base class for group chat teams. To implement a
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/teams/_group_chat/_base_group_chat.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio from abc import ABC, abstractmethod from typing import Any, List from autogen_core import DefaultTopicId, MessageContext, event, rpc from ...base import TerminationCondition from ...messages import AgentEvent, ChatMessage, StopMessage from ._events import ( GroupChatAgentResponse, GroupChatRequestPublish, GroupChatReset, GroupChatStart, GroupChatTermination, ) from ._sequential_routed_agent import SequentialRoutedAgent class BaseGroupChatManager(SequentialRoutedAgent, ABC): """Base class for a group chat manager that manages a group chat with multiple participants. It is the responsibility of the caller to ensure: - All participants must subscribe to the group chat topic and each of their own topics. - The group chat manager must subscribe to the group chat topic. - The agent types of the participants must be unique. - For each participant, the agent type must be the same as the topic type. Without the above condition
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/teams/_group_chat/_base_group_chat_manager.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from typing import Any, List, Mapping from autogen_core import DefaultTopicId, MessageContext, event, rpc from ...base import ChatAgent, Response from ...messages import ChatMessage from ...state import ChatAgentContainerState from ._events import GroupChatAgentResponse, GroupChatMessage, GroupChatRequestPublish, GroupChatReset, GroupChatStart from ._sequential_routed_agent import SequentialRoutedAgent class ChatAgentContainer(SequentialRoutedAgent): """A core agent class that delegates message handling to an :class:`autogen_agentchat.base.ChatAgent` so that it can be used in a group chat team. Args: parent_topic_type (str): The topic type of the parent orchestrator. output_topic_type (str): The topic type for the output. agent (ChatAgent): The agent to delegate message handling to. """ def __init__(self, parent_topic_type: str, output_topic_type: str, agent: ChatAgent) -> None: super().__init__(description=agent.description
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/teams/_group_chat/_chat_agent_container.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from typing import List from pydantic import BaseModel from ...base import Response from ...messages import AgentEvent, ChatMessage, StopMessage class GroupChatStart(BaseModel): """A request to start a group chat.""" messages: List[ChatMessage] | None = None """An optional list of messages to start the group chat.""" class GroupChatAgentResponse(BaseModel): """A response published to a group chat.""" agent_response: Response """The response from an agent.""" class GroupChatRequestPublish(BaseModel): """A request to publish a message to a group chat.""" ... class GroupChatMessage(BaseModel): """A message from a group chat.""" message: AgentEvent | ChatMessage """The message that was published.""" class GroupChatTermination(BaseModel): """A message indicating that a group chat has terminated.""" message: StopMessage """The stop message that indicates the reason of termination.""" class GroupChatReset(BaseModel):
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/teams/_group_chat/_events.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from typing import Any, Callable, List, Mapping from ...base import ChatAgent, TerminationCondition from ...messages import AgentEvent, ChatMessage from ...state import RoundRobinManagerState from ._base_group_chat import BaseGroupChat from ._base_group_chat_manager import BaseGroupChatManager class RoundRobinGroupChatManager(BaseGroupChatManager): """A group chat manager that selects the next speaker in a round-robin fashion.""" def __init__( self, group_topic_type: str, output_topic_type: str, participant_topic_types: List[str], participant_descriptions: List[str], termination_condition: TerminationCondition | None, max_turns: int | None = None, ) -> None: super().__init__( group_topic_type, output_topic_type, participant_topic_types, participant_descriptions, termination_condition, max_turns, ) self._next_speaker_inde
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/teams/_group_chat/_round_robin_group_chat.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import logging import re from typing import Any, Callable, Dict, List, Mapping, Sequence from autogen_core.models import ChatCompletionClient, SystemMessage from ... import TRACE_LOGGER_NAME from ...base import ChatAgent, TerminationCondition from ...messages import ( AgentEvent, BaseAgentEvent, ChatMessage, MultiModalMessage, ) from ...state import SelectorManagerState from ._base_group_chat import BaseGroupChat from ._base_group_chat_manager import BaseGroupChatManager trace_logger = logging.getLogger(TRACE_LOGGER_NAME) class SelectorGroupChatManager(BaseGroupChatManager): """A group chat manager that selects the next speaker using a ChatCompletion model and a custom selector function.""" def __init__( self, group_topic_type: str, output_topic_type: str, participant_topic_types: List[str], participant_descriptions: List[str], termination_condition: TerminationCondition | None, max_turns: int | N
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/teams/_group_chat/_selector_group_chat.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio from typing import Any from autogen_core import MessageContext, RoutedAgent class FIFOLock: """A lock that ensures coroutines acquire the lock in the order they request it.""" def __init__(self) -> None: self._queue = asyncio.Queue[asyncio.Event]() self._locked = False async def acquire(self) -> None: # If the lock is not held by any coroutine, set the lock to be held # by the current coroutine. if not self._locked: self._locked = True return # If the lock is held by another coroutine, create an event and put it # in the queue. Wait for the event to be set. event = asyncio.Event() await self._queue.put(event) await event.wait() def release(self) -> None: if not self._queue.empty(): # If there are events in the queue, get the next event and set it. next_event = self._queue.get_nowait() next_event.set()
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/teams/_group_chat/_sequential_routed_agent.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from typing import Any, Callable, List, Mapping from ...base import ChatAgent, TerminationCondition from ...messages import AgentEvent, ChatMessage, HandoffMessage from ...state import SwarmManagerState from ._base_group_chat import BaseGroupChat from ._base_group_chat_manager import BaseGroupChatManager class SwarmGroupChatManager(BaseGroupChatManager): """A group chat manager that selects the next speaker based on handoff message only.""" def __init__( self, group_topic_type: str, output_topic_type: str, participant_topic_types: List[str], participant_descriptions: List[str], termination_condition: TerminationCondition | None, max_turns: int | None, ) -> None: super().__init__( group_topic_type, output_topic_type, participant_topic_types, participant_descriptions, termination_condition, max_turns, ) self._current_speak
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/teams/_group_chat/_swarm_group_chat.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
from ._magentic_one_group_chat import MagenticOneGroupChat __all__ = [ "MagenticOneGroupChat", ]
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/teams/_group_chat/_magentic_one/__init__.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import logging from typing import Callable, List from autogen_core.models import ChatCompletionClient from .... import EVENT_LOGGER_NAME, TRACE_LOGGER_NAME from ....base import ChatAgent, TerminationCondition from .._base_group_chat import BaseGroupChat from ._magentic_one_orchestrator import MagenticOneOrchestrator from ._prompts import ORCHESTRATOR_FINAL_ANSWER_PROMPT trace_logger = logging.getLogger(TRACE_LOGGER_NAME) event_logger = logging.getLogger(EVENT_LOGGER_NAME) class MagenticOneGroupChat(BaseGroupChat): """A team that runs a group chat with participants managed by the MagenticOneOrchestrator. The orchestrator handles the conversation flow, ensuring that the task is completed efficiently by managing the participants' interactions. The orchestrator is based on the Magentic-One architecture, which is a generalist multi-agent system for solving complex tasks (see references below). Args: participants (List[ChatAgent]): The participants in the
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/teams/_group_chat/_magentic_one/_magentic_one_group_chat.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import json import logging from typing import Any, Dict, List, Mapping from autogen_core import AgentId, CancellationToken, DefaultTopicId, Image, MessageContext, event, rpc from autogen_core.models import ( AssistantMessage, ChatCompletionClient, LLMMessage, UserMessage, ) from .... import TRACE_LOGGER_NAME from ....base import Response, TerminationCondition from ....messages import ( AgentEvent, ChatMessage, HandoffMessage, MultiModalMessage, StopMessage, TextMessage, ToolCallExecutionEvent, ToolCallRequestEvent, ToolCallSummaryMessage, ) from ....state import MagenticOneOrchestratorState from .._base_group_chat_manager import BaseGroupChatManager from .._events import ( GroupChatAgentResponse, GroupChatMessage, GroupChatRequestPublish, GroupChatReset, GroupChatStart, GroupChatTermination, ) from ._prompts import ( ORCHESTRATOR_FINAL_ANSWER_PROMPT, ORCHESTRATOR_PROGRESS_LEDGER_PROMPT, ORCHESTRAT
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/teams/_group_chat/_magentic_one/_magentic_one_orchestrator.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
ORCHESTRATOR_SYSTEM_MESSAGE = "" ORCHESTRATOR_TASK_LEDGER_FACTS_PROMPT = """Below I will present you a request. Before we begin addressing the request, please answer the following pre-survey to the best of your ability. Keep in mind that you are Ken Jennings-level with trivia, and Mensa-level with puzzles, so there should be a deep well to draw from. Here is the request: {task} Here is the pre-survey: 1. Please list any specific facts or figures that are GIVEN in the request itself. It is possible that there are none. 2. Please list any facts that may need to be looked up, and WHERE SPECIFICALLY they might be found. In some cases, authoritative sources are mentioned in the request itself. 3. Please list any facts that may need to be derived (e.g., via logical deduction, simulation, or computation) 4. Please list any facts that are recalled from memory, hunches, well-reasoned guesses, etc. When answering this survey, keep in mind that "facts" will typically be spe
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/teams/_group_chat/_magentic_one/_prompts.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
""" This module implements utility classes for formatting/printing agent messages. """ from ._console import Console __all__ = ["Console"]
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/ui/__init__.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import os import sys import time from typing import AsyncGenerator, List, Optional, TypeVar, cast from autogen_core import Image from autogen_core.models import RequestUsage from autogen_agentchat.base import Response, TaskResult from autogen_agentchat.messages import AgentEvent, ChatMessage, MultiModalMessage def _is_running_in_iterm() -> bool: return os.getenv("TERM_PROGRAM") == "iTerm.app" def _is_output_a_tty() -> bool: return sys.stdout.isatty() T = TypeVar("T", bound=TaskResult | Response) async def Console( stream: AsyncGenerator[AgentEvent | ChatMessage | T, None], *, no_inline_images: bool = False, ) -> T: """ Consumes the message stream from :meth:`~autogen_agentchat.base.TaskRunner.run_stream` or :meth:`~autogen_agentchat.base.ChatAgent.on_messages_stream` and renders the messages to the console. Returns the last processed TaskResult or Response. Args: stream (AsyncGenerator[AgentEvent | ChatMessage | TaskResult, Non
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/src/autogen_agentchat/ui/_console.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio import json import logging from typing import Any, AsyncGenerator, List import pytest from autogen_agentchat import EVENT_LOGGER_NAME from autogen_agentchat.agents import AssistantAgent from autogen_agentchat.base import Handoff, TaskResult from autogen_agentchat.messages import ( ChatMessage, HandoffMessage, MultiModalMessage, TextMessage, ToolCallExecutionEvent, ToolCallRequestEvent, ToolCallSummaryMessage, ) from autogen_core import Image from autogen_core.model_context import BufferedChatCompletionContext from autogen_core.models import LLMMessage from autogen_core.models._model_client import ModelFamily from autogen_core.tools import FunctionTool from autogen_ext.models.openai import OpenAIChatCompletionClient from openai.resources.chat.completions import AsyncCompletions from openai.types.chat.chat_completion import ChatCompletion, Choice from openai.types.chat.chat_completion_chunk import ChatCompletionChunk from openai.types.chat.chat
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/tests/test_assistant_agent.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import pytest from autogen_agentchat.agents import CodeExecutorAgent from autogen_agentchat.base import Response from autogen_agentchat.messages import TextMessage from autogen_core import CancellationToken from autogen_ext.code_executors.local import LocalCommandLineCodeExecutor @pytest.mark.asyncio async def test_basic_code_execution() -> None: """Test basic code execution""" agent = CodeExecutorAgent(name="code_executor", code_executor=LocalCommandLineCodeExecutor()) messages = [ TextMessage( content=""" ```python import math number = 42 square_root = math.sqrt(number) print("%0.3f" % (square_root,)) ``` """.strip(), source="assistant", ) ] response = await agent.on_messages(messages, CancellationToken()) assert isinstance(response, Response) assert isinstance(response.chat_message, TextMessage) assert response.chat_message.content.strip() == "6.481" assert response.chat_message.source == "code_executo
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/tests/test_code_executor_agent.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio import json import logging import tempfile from typing import Any, AsyncGenerator, List, Sequence import pytest from autogen_agentchat import EVENT_LOGGER_NAME from autogen_agentchat.agents import ( AssistantAgent, BaseChatAgent, CodeExecutorAgent, ) from autogen_agentchat.base import Handoff, Response, TaskResult from autogen_agentchat.conditions import HandoffTermination, MaxMessageTermination, TextMentionTermination from autogen_agentchat.messages import ( AgentEvent, ChatMessage, HandoffMessage, MultiModalMessage, StopMessage, TextMessage, ToolCallExecutionEvent, ToolCallRequestEvent, ToolCallSummaryMessage, ) from autogen_agentchat.teams import ( RoundRobinGroupChat, SelectorGroupChat, Swarm, ) from autogen_agentchat.teams._group_chat._round_robin_group_chat import RoundRobinGroupChatManager from autogen_agentchat.teams._group_chat._selector_group_chat import SelectorGroupChatManager from autogen_agentchat
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/tests/test_group_chat.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio import json import logging from typing import Sequence import pytest from autogen_agentchat import EVENT_LOGGER_NAME from autogen_agentchat.agents import ( BaseChatAgent, ) from autogen_agentchat.base import Response from autogen_agentchat.messages import ( ChatMessage, TextMessage, ) from autogen_agentchat.teams import ( MagenticOneGroupChat, ) from autogen_agentchat.teams._group_chat._magentic_one._magentic_one_orchestrator import MagenticOneOrchestrator from autogen_core import AgentId, CancellationToken from autogen_ext.models.replay import ReplayChatCompletionClient from utils import FileLogHandler logger = logging.getLogger(EVENT_LOGGER_NAME) logger.setLevel(logging.DEBUG) logger.addHandler(FileLogHandler("test_magentic_one_group_chat.log")) class _EchoAgent(BaseChatAgent): def __init__(self, name: str, description: str) -> None: super().__init__(name, description) self._last_message: str | None = None self._total_mes
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/tests/test_magentic_one_group_chat.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio import random from dataclasses import dataclass from typing import List import pytest from autogen_agentchat.teams._group_chat._sequential_routed_agent import SequentialRoutedAgent from autogen_core import ( AgentId, DefaultTopicId, MessageContext, SingleThreadedAgentRuntime, default_subscription, message_handler, ) @dataclass class Message: content: str @default_subscription class _TestAgent(SequentialRoutedAgent): def __init__(self, description: str) -> None: super().__init__(description=description) self.messages: List[Message] = [] @message_handler async def handle_content_publish(self, message: Message, ctx: MessageContext) -> None: # Sleep a random amount of time to simulate processing time. await asyncio.sleep(random.random() / 100) self.messages.append(message) @pytest.mark.asyncio async def test_sequential_routed_agent() -> None: runtime = SingleThreadedAgentRuntime()
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/tests/test_sequential_routed_agent.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio from typing import Any, AsyncGenerator, List import pytest from autogen_agentchat.agents import AssistantAgent, SocietyOfMindAgent from autogen_agentchat.conditions import MaxMessageTermination from autogen_agentchat.teams import RoundRobinGroupChat from autogen_ext.models.openai import OpenAIChatCompletionClient from openai.resources.chat.completions import AsyncCompletions from openai.types.chat.chat_completion import ChatCompletion, Choice from openai.types.chat.chat_completion_chunk import ChatCompletionChunk from openai.types.chat.chat_completion_message import ChatCompletionMessage from openai.types.completion_usage import CompletionUsage class _MockChatCompletion: def __init__(self, chat_completions: List[ChatCompletion]) -> None: self._saved_chat_completions = chat_completions self._curr_index = 0 async def mock_create( self, *args: Any, **kwargs: Any ) -> ChatCompletion | AsyncGenerator[ChatCompletionChunk, None]:
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/tests/test_society_of_mind_agent.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio import pytest from autogen_agentchat.base import TerminatedException from autogen_agentchat.conditions import ( ExternalTermination, HandoffTermination, MaxMessageTermination, SourceMatchTermination, StopMessageTermination, TextMentionTermination, TimeoutTermination, TokenUsageTermination, ) from autogen_agentchat.messages import HandoffMessage, StopMessage, TextMessage from autogen_core.models import RequestUsage @pytest.mark.asyncio async def test_handoff_termination() -> None: termination = HandoffTermination("target") assert await termination([]) is None await termination.reset() assert await termination([TextMessage(content="Hello", source="user")]) is None await termination.reset() assert await termination([HandoffMessage(target="target", source="user", content="Hello")]) is not None assert termination.terminated await termination.reset() assert await termination([HandoffMessage(target="another"
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/tests/test_termination_condition.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import asyncio from typing import Optional, Sequence import pytest from autogen_agentchat.agents import UserProxyAgent from autogen_agentchat.base import Response from autogen_agentchat.messages import ChatMessage, HandoffMessage, TextMessage from autogen_core import CancellationToken @pytest.mark.asyncio async def test_basic_input() -> None: """Test basic message handling with custom input""" def custom_input(prompt: str) -> str: return "The height of the eiffel tower is 324 meters. Aloha!" agent = UserProxyAgent(name="test_user", input_func=custom_input) messages = [TextMessage(content="What is the height of the eiffel tower?", source="assistant")] response = await agent.on_messages(messages, CancellationToken()) assert isinstance(response, Response) assert isinstance(response.chat_message, TextMessage) assert response.chat_message.content == "The height of the eiffel tower is 324 meters. Aloha!" assert response.chat_message.source =
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/tests/test_userproxy_agent.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
import json import logging import sys from datetime import datetime from pydantic import BaseModel class FileLogHandler(logging.Handler): def __init__(self, filename: str) -> None: super().__init__() self.filename = filename self.file_handler = logging.FileHandler(filename) def emit(self, record: logging.LogRecord) -> None: ts = datetime.fromtimestamp(record.created).isoformat() if isinstance(record.msg, BaseModel): record.msg = json.dumps( { "timestamp": ts, "message": record.msg.model_dump(), "type": record.msg.__class__.__name__, }, ) self.file_handler.emit(record) class ConsoleLogHandler(logging.Handler): def emit(self, record: logging.LogRecord) -> None: ts = datetime.fromtimestamp(record.created).isoformat() if isinstance(record.msg, BaseModel): record.msg = json.dumps(
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-agentchat/tests/utils.py", "file_type": ".py", "source_type": "code" }
Analyze this document content
# AutoGen Core - [Documentation](https://microsoft.github.io/autogen/dev/user-guide/core-user-guide/index.html)
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/README.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
## Building the AutoGen Documentation AutoGen documentation is based on the sphinx documentation system and uses the myst-parser to render markdown files. It uses the [pydata-sphinx-theme](https://pydata-sphinx-theme.readthedocs.io/en/latest/) to style the documentation. ### Prerequisites Ensure you have all of the dev dependencies for the `autogen-core` package installed. You can install them by running the following command from the root of the python repository: ```bash uv sync source .venv/bin/activate ``` ## Building Docs To build the documentation, run the following command from the root of the python repository: ```bash poe --directory ./packages/autogen-core/ docs-build ``` To serve the documentation locally, run the following command from the root of the python repository: ```bash poe --directory ./packages/autogen-core/ docs-serve ``` [!NOTE] Sphinx will only rebuild files that have changed since the last build. If you want to force a full rebuild, you can delete th
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/README.md", "file_type": ".md", "source_type": "document" }
Analyze this code content
from pathlib import Path from string import Template import sys THIS_FILE_DIR = Path(__file__).parent # Contains single text template $to_url HTML_PAGE_TEMPLATE_FILE = THIS_FILE_DIR / "redirect_template.html" HTML_REDIRECT_TEMPLATE = HTML_PAGE_TEMPLATE_FILE.open("r").read() REDIRECT_URLS_FILE = THIS_FILE_DIR / "redirect_urls.txt" def generate_redirect(file_to_write: str, new_url: str, base_dir: Path): # Create a new redirect page redirect_page = Template(HTML_REDIRECT_TEMPLATE).substitute(to_url=new_url) # If the url ends with /, add index.html if file_to_write.endswith("/"): file_to_write += "index.html" else: file_to_write += "/index.html" if file_to_write.startswith("/"): file_to_write = file_to_write[1:] # Create the path to the redirect page redirect_page_path = base_dir / file_to_write # Create the directory if it doesn't exist redirect_page_path.parent.mkdir(parents=True, exist_ok=True) # Write the redi
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/redirects/redirects.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
# Configuration file for the Sphinx documentation builder. # # For the full list of built-in configuration values, see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html from sphinx.application import Sphinx from typing import Any, Dict from pathlib import Path import sys import os # -- Project information ----------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information import autogen_core project = "autogen_core" copyright = "2024, Microsoft" author = "Microsoft" version = "0.4" release = autogen_core.__version__ sys.path.append(str(Path(".").resolve())) # -- General configuration --------------------------------------------------- # https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration extensions = [ "sphinx.ext.napoleon", "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx.ext.todo", "sphinx.ext.viewcode", "sphinx.e
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/conf.py", "file_type": ".py", "source_type": "code" }
Analyze this document content
--- myst: html_meta: "description lang=en": | Top-level documentation for AutoGen, a framework for developing applications using AI agents html_theme.sidebar_secondary.remove: false sd_hide_title: true --- <style> .hero-title { font-size: 60px; font-weight: bold; margin: 2rem auto 0; } .wip-card { border: 1px solid var(--pst-color-success); background-color: var(--pst-color-success-bg); border-radius: .25rem; padding: 0.3rem; display: flex; justify-content: center; align-items: center; margin-bottom: 1rem; } </style> # AutoGen <div class="container"> <div class="row text-center"> <div class="col-sm-12"> <h1 class="hero-title"> AutoGen </h1> <h3> A framework for building AI agents and multi-agent applications </h3> </div> </div> </div> <div style="margin-top: 2rem;"> ::::{grid} :gutter: 2 :::{grid-item-card} :shadow: none :margin: 2 0 0 0 :columns: 12 12 12 12 <div class="sd-card-title sd-font-weight-bold docutils"> {fas}`people-group;pst-color
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/index.md", "file_type": ".md", "source_type": "document" }
Analyze this code content
# Modified from: https://github.com/kai687/sphinxawesome-codelinter import tempfile from typing import AbstractSet, Any, Iterable from docutils import nodes from sphinx.application import Sphinx from sphinx.builders import Builder from sphinx.util import logging from sphinx.util.console import darkgreen, darkred, red, teal, faint # type: ignore[attr-defined] from pygments import highlight # type: ignore from pygments.lexers import PythonLexer from pygments.formatters import TerminalFormatter logger = logging.getLogger(__name__) __version__ = "0.1.0" class CodeLinter(Builder): """Iterate over all ``literal_block`` nodes. pipe them into any command line tool that can read from standard input. """ name = "code_lint" allow_parallel = True def init(self) -> None: """Initialize.""" self._had_errors = False pass def get_outdated_docs(self) -> str | Iterable[str]: """Check for outdated files. Return an iterab
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/_extension/code_lint.py", "file_type": ".py", "source_type": "code" }
Analyze this code content
"""A directive to generate a gallery of images from structured data. Generating a gallery of images that are all the same size is a common pattern in documentation, and this can be cumbersome if the gallery is generated programmatically. This directive wraps this particular use-case in a helper-directive to generate it with a single YAML configuration file. It currently exists for maintainers of the pydata-sphinx-theme, but might be abstracted into a standalone package if it proves useful. """ from pathlib import Path from typing import Any, ClassVar, Dict, List from docutils import nodes from docutils.parsers.rst import directives from sphinx.application import Sphinx from sphinx.util import logging from sphinx.util.docutils import SphinxDirective from yaml import safe_load logger = logging.getLogger(__name__) TEMPLATE_GRID = """ `````{{grid}} {columns} {options} {content} ````` """ GRID_CARD = """ ````{{grid-item-card}} {title} {options} {content} ```` """ class GalleryG
Code analysis and explanation
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/_extension/gallery_directive.py", "file_type": ".py", "source_type": "code" }
Analyze this document content
--- myst: html_meta: "description lang=en": | AutoGen is a community-driven project. Learn how to get involved, contribute, and connect with the community. --- # API Reference ```{toctree} :hidden: :caption: AutoGen AgentChat python/autogen_agentchat python/autogen_agentchat.messages python/autogen_agentchat.agents python/autogen_agentchat.teams python/autogen_agentchat.base python/autogen_agentchat.conditions python/autogen_agentchat.ui python/autogen_agentchat.state ``` ```{toctree} :hidden: :caption: AutoGen Core python/autogen_core python/autogen_core.code_executor python/autogen_core.models python/autogen_core.model_context python/autogen_core.tools python/autogen_core.tool_agent python/autogen_core.exceptions python/autogen_core.logging ``` ```{toctree} :hidden: :caption: AutoGen Extensions python/autogen_ext.agents.magentic_one python/autogen_ext.agents.openai python/autogen_ext.agents.web_surfer python/autogen_ext.agents.file_surfer python/autogen_ext.agents.
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/reference/index.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
--- myst: html_meta: "description lang=en": | User Guide for AgentChat, a high-level API for AutoGen --- # AgentChat AgentChat is a high-level API for building multi-agent applications. It is built on top of the [`autogen-core`](../core-user-guide/index.md) package. For beginner users, AgentChat is the recommended starting point. For advanced users, [`autogen-core`](../core-user-guide/index.md)'s event-driven programming model provides more flexibility and control over the underlying components. AgentChat provides intuitive defaults, such as **Agents** with preset behaviors and **Teams** with predefined [multi-agent design patterns](../core-user-guide/design-patterns/intro.md). ::::{grid} 2 2 2 2 :gutter: 3 :::{grid-item-card} {fas}`download;pst-color-primary` Installation :link: ./installation.html How to install AgentChat ::: :::{grid-item-card} {fas}`rocket;pst-color-primary` Quickstart :link: ./quickstart.html Build your first agent ::: :::{grid-item-card} {fas
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/agentchat-user-guide/index.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
--- myst: html_meta: "description lang=en": | Installing AutoGen AgentChat --- # Installation ## Create a Virtual Environment (optional) When installing AgentChat locally, we recommend using a virtual environment for the installation. This will ensure that the dependencies for AgentChat are isolated from the rest of your system. ``````{tab-set} `````{tab-item} venv Create and activate: ```bash python3 -m venv .venv source .venv/bin/activate ``` To deactivate later, run: ```bash deactivate ``` ````` `````{tab-item} conda [Install Conda](https://docs.conda.io/projects/conda/en/stable/user-guide/install/index.html) if you have not already. Create and activate: ```bash conda create -n autogen python=3.10 conda activate autogen ``` To deactivate later, run: ```bash conda deactivate ``` ````` `````` ## Install Using pip Install the `autogen-agentchat` package using pip: ```bash pip install "autogen-agentchat==0.4.0.dev13" ``` ```{note} Python 3.10 or la
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/agentchat-user-guide/installation.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
# Migration Guide for v0.2 to v0.4 This is a migration guide for users of the `v0.2.*` versions of `autogen-agentchat` to the `v0.4` version, which introduces a new set of APIs and features. The `v0.4` version contains breaking changes. Please read this guide carefully. We still maintain the `v0.2` version in the `0.2` branch; however, we highly recommend you upgrade to the `v0.4` version. > **Note**: We no longer have admin access to the `pyautogen` PyPI package, and > the releases from that package are no longer from Microsoft since version 0.2.34. > To continue use the `v0.2` version of AutoGen, install it using `autogen-agentchat~=0.2`. > Please read our [clarification statement](https://github.com/microsoft/autogen/discussions/4217) regarding forks. ## What is `v0.4`? Since the release of AutoGen in 2023, we have intensively listened to our community and users from small startups and large enterprises, gathering much feedback. Based on that feedback, we built AutoGen `v0.4`, a
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/agentchat-user-guide/migration-guide.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
--- myst: html_meta: "description lang=en": | Examples built using AgentChat, a high-level api for AutoGen --- # Examples A list of examples to help you get started with AgentChat. :::::{grid} 2 2 2 3 ::::{grid-item-card} Travel Planning :img-top: ../../../images/example-travel.jpeg :img-alt: travel planning example :link: ./travel-planning.html ^^^ Generating a travel plan using multiple agents. :::: ::::{grid-item-card} Company Research :img-top: ../../../images/example-company.jpg :img-alt: company research example :link: ./company-research.html ^^^ Generating a company research report using multiple agents with tools. :::: ::::{grid-item-card} Literature Review :img-top: ../../../images/example-literature.jpg :img-alt: literature review example :link: ./literature-review.html ^^^ Generating a literature review using agents with tools. :::: ::::: ```{toctree} :maxdepth: 1 :hidden: travel-planning company-research literature-review ```
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/agentchat-user-guide/examples/index.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
--- myst: html_meta: "description lang=en": | FAQ for AutoGen Studio - A low code tool for building and debugging multi-agent systems --- # FAQ ## Q: How do I specify the directory where files(e.g. database) are stored? A: You can specify the directory where files are stored by setting the `--appdir` argument when running the application. For example, `autogenstudio ui --appdir /path/to/folder`. This will store the database (default) and other files in the specified directory e.g. `/path/to/folder/database.sqlite`. ## Q: Can I use other models with AutoGen Studio? Yes. AutoGen standardizes on the openai model api format, and you can use any api server that offers an openai compliant endpoint. AutoGen Studio is based on declaritive specifications which applies to models as well. Agents can include a model_client field which specifies the model endpoint details including `model`, `api_key`, `base_url`, `model type`. An example of the openai model client is shown below:
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/autogenstudio-user-guide/faq.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
--- myst: html_meta: "description lang=en": | User Guide for AutoGen Studio - A low code tool for building and debugging multi-agent systems --- # AutoGen Studio [![PyPI version](https://badge.fury.io/py/autogenstudio.svg)](https://badge.fury.io/py/autogenstudio) [![Downloads](https://static.pepy.tech/badge/autogenstudio/week)](https://pepy.tech/project/autogenstudio) AutoGen Studio is a low-code interface built to help you rapidly prototype AI agents, enhance them with tools, compose them into teams and interact with them to accomplish tasks. It is built on [AutoGen AgentChat](https://microsoft.github.io/autogen) - a high-level API for building multi-agent applications. ![AutoGen Studio](https://media.githubusercontent.com/media/microsoft/autogen/refs/heads/main/python/packages/autogen-studio/docs/ags_screen.png) Code for AutoGen Studio is on GitHub at [microsoft/autogen](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-studio) ```{caution} Auto
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/autogenstudio-user-guide/index.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
--- myst: html_meta: "description lang=en": | User Guide for AutoGen Studio - A low code tool for building and debugging multi-agent systems --- # Installation There are two ways to install AutoGen Studio - from PyPi or from source. We **recommend installing from PyPi** unless you plan to modify the source code. 1. **Install from PyPi** We recommend using a virtual environment (e.g., conda) to avoid conflicts with existing Python packages. With Python 3.10 or newer active in your virtual environment, use pip to install AutoGen Studio: ```bash pip install -U autogenstudio ``` 2. **Install from Source** > Note: This approach requires some familiarity with building interfaces in React. If you prefer to install from source, ensure you have Python 3.10+ and Node.js (version above 14.15.0) installed. Here's how you get started: - Clone the AutoGen Studio repository and install its Python dependencies: ```bash pip install -e .
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/autogenstudio-user-guide/installation.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
--- myst: html_meta: "description lang=en": | Usage for AutoGen Studio - A low code tool for building and debugging multi-agent systems --- # Usage The expected usage behavior is that developers use the provided Team Builder interface to to define teams - create agents, attach tools and models to agents, and define termination conditions. Once the team is defined, users can run the team in the Playground to interact with the team to accomplish tasks. ![AutoGen Studio](https://media.githubusercontent.com/media/microsoft/autogen/refs/heads/main/python/packages/autogen-studio/docs/ags_screen.png) ## Building an Agent Team AutoGen Studio is tied very closely with all of the component abstractions provided by AutoGen AgentChat. This includes - {py:class}`~autogen_agentchat.teams`, {py:class}`~autogen_agentchat.agents`, {py:class}`~autogen_core.models`, {py:class}`~autogen_core.tools`, termination {py:class}`~autogen_agentchat.conditions`. Users can define these components
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/autogenstudio-user-guide/usage.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
# FAQs ## How do I get the underlying agent instance? Agents might be distributed across multiple machines, so the underlying agent instance is intentionally discouraged from being accessed. If the agent is definitely running on the same machine, you can access the agent instance by calling {py:meth}`autogen_core.AgentRuntime.try_get_underlying_agent_instance` on the `AgentRuntime`. If the agent is not available this will throw an exception. ## How do I call call a function on an agent? Since the instance itself is not accessible, you can't call a function on an agent directly. Instead, you should create a type to represent the function call and its arguments, and then send that message to the agent. Then in the agent, create a handler for that message type and implement the required logic. This also supports returning a response to the caller. This allows your agent to work in a distributed environment a well as a local one. ## Why do I need to use a factory to register an agent
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/core-user-guide/faqs.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
--- myst: html_meta: "description lang=en": | User Guide for AutoGen Core, a framework for building multi-agent applications with AI agents. --- # Core ```{toctree} :maxdepth: 1 :hidden: installation quickstart ``` ```{toctree} :maxdepth: 1 :hidden: :caption: Core Concepts core-concepts/agent-and-multi-agent-application core-concepts/architecture core-concepts/application-stack core-concepts/agent-identity-and-lifecycle core-concepts/topic-and-subscription ``` ```{toctree} :maxdepth: 1 :hidden: :caption: Framework Guide framework/agent-and-agent-runtime framework/message-and-communication framework/model-clients framework/tools framework/logging framework/telemetry framework/command-line-code-executors framework/distributed-agent-runtime framework/component-config ``` ```{toctree} :maxdepth: 1 :hidden: :caption: Multi-Agent Design Patterns design-patterns/intro design-patterns/concurrent-agents design-patterns/sequential-workflow design-patterns/group-chat design-p
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/core-user-guide/index.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
# Installation ## Install using pip Install the `autogen-core` package using pip: ```bash pip install "autogen-core==0.4.0.dev13" ``` ```{note} Python 3.10 or later is required. ```
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/core-user-guide/installation.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
# Azure OpenAI with AAD Auth This guide will show you how to use the Azure OpenAI client with Azure Active Directory (AAD) authentication. The identity used must be assigned the [**Cognitive Services OpenAI User**](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/role-based-access-control#cognitive-services-openai-user) role. ## Install Azure Identity client The Azure identity client is used to authenticate with Azure Active Directory. ```sh pip install azure-identity ``` ## Using the Model Client ```python from autogen_ext.models.openai import AzureOpenAIChatCompletionClient from azure.identity import DefaultAzureCredential, get_bearer_token_provider # Create the token provider token_provider = get_bearer_token_provider( DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default" ) client = AzureOpenAIChatCompletionClient( azure_deployment="{your-azure-deployment}", model="{model-name, such as gpt-4o}", api_version="2024-02-01",
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/core-user-guide/cookbook/azure-openai-with-aad-auth.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
# Cookbook This section contains a collection of recipes that demonstrate how to use the Core API features. ## List of recipes ```{toctree} :maxdepth: 1 azure-openai-with-aad-auth termination-with-intervention tool-use-with-intervention extracting-results-with-an-agent openai-assistant-agent langgraph-agent llamaindex-agent local-llms-ollama-litellm instrumenting topic-subscription-scenarios structured-output-agent llm-usage-logger ```
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/core-user-guide/cookbook/index.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
# Instrumentating your code locally AutoGen supports instrumenting your code using [OpenTelemetry](https://opentelemetry.io). This allows you to collect traces and logs from your code and send them to a backend of your choice. While debugging, you can use a local backend such as [Aspire](https://aspiredashboard.com/) or [Jaeger](https://www.jaegertracing.io/). In this guide we will use Aspire as an example. ## Setting up Aspire Follow the instructions [here](https://learn.microsoft.com/en-us/dotnet/aspire/fundamentals/dashboard/overview?tabs=bash#standalone-mode) to set up Aspire in standalone mode. This will require Docker to be installed on your machine. ## Instrumenting your code Once you have a dashboard set up, now it's a matter of sending traces and logs to it. You can follow the steps in the [Telemetry Guide](../framework/telemetry.md) to set up the opentelemetry sdk and exporter. After instrumenting your code with the Aspire Dashboard running, you should see traces and l
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/core-user-guide/cookbook/instrumenting.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
# Agent and Multi-Agent Applications An **agent** is a software entity that communicates via messages, maintains its own state, and performs actions in response to received messages or changes in its state. These actions may modify the agent’s state and produce external effects, such as updating message logs, sending new messages, executing code, or making API calls. Many software systems can be modeled as a collection of independent agents that interact with one another. Examples include: - Sensors on a factory floor - Distributed services powering web applications - Business workflows involving multiple stakeholders - AI agents, such as those powered by language models (e.g., GPT-4), which can write code, interface with external systems, and communicate with other agents. These systems, composed of multiple interacting agents, are referred to as **multi-agent applications**. > **Note:** > AI agents typically use language models as part of their software stack to interpret mess
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/core-user-guide/core-concepts/agent-and-multi-agent-application.md", "file_type": ".md", "source_type": "document" }
Analyze this document content
(agentid_and_lifecycle)= # Agent Identity and Lifecycle The agent runtime manages agents' identities and lifecycles. Application does not create agents directly, rather, it registers an agent type with a factory function for agent instances. In this section, we explain how agents are identified and created by the runtime. ## Agent ID Agent ID uniquely identifies an agent instance within an agent runtime -- including distributed runtime. It is the "address" of the agent instance for receiving messages. It has two components: agent type and agent key. ```{note} Agent ID = (Agent Type, Agent Key) ``` The agent type is not an agent class. It associates an agent with a specific factory function, which produces instances of agents of the same agent type. For example, different factory functions can produce the same agent class but with different constructor parameters. The agent key is an instance identifier for the given agent type. Agent IDs can be converted to and from strings. the f
Document summary and key points
{ "file_path": "multi_repo_data/autogen/python/packages/autogen-core/docs/src/user-guide/core-user-guide/core-concepts/agent-identity-and-lifecycle.md", "file_type": ".md", "source_type": "document" }