instruction
stringclasses 2
values | input
stringlengths 0
1k
| output
stringclasses 2
values | metadata
dict |
---|---|---|---|
Analyze this code content | """This example demonstrates a human user interacting with a web surfer agent
to navigate the web through an embedded incognito browser.
The human user and the web surfer agent takes turn to write input or perform actions,
orchestrated by an round-robin orchestrator agent."""
import asyncio
import logging
import os
from autogen_core import EVENT_LOGGER_NAME, AgentId, AgentProxy, SingleThreadedAgentRuntime
from autogen_magentic_one.agents.multimodal_web_surfer import MultimodalWebSurfer
from autogen_magentic_one.agents.orchestrator import RoundRobinOrchestrator
from autogen_magentic_one.agents.user_proxy import UserProxy
from autogen_magentic_one.messages import RequestReplyMessage
from autogen_magentic_one.utils import LogHandler, create_completion_client_from_env
# NOTE: Don't forget to 'playwright install --with-deps chromium'
async def main() -> None:
# Create the runtime.
runtime = SingleThreadedAgentRuntime()
# Create an appropriate client
client = create_com | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/examples/example_websurfer.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this document content | # MagenticOne Interface
This repository contains a preview interface for interacting with the MagenticOne system. It includes helper classes, and example usage.
## Usage
### MagenticOneHelper
The MagenticOneHelper class provides an interface to interact with the MagenticOne system. It saves logs to a user-specified directory and provides methods to run tasks, stream logs, and retrieve the final answer.
The class provides the following methods:
- async initialize(self) -> None: Initializes the MagenticOne system, setting up agents and runtime.
- async run_task(self, task: str) -> None: Runs a specific task through the MagenticOne system.
- get_final_answer(self) -> Optional[str]: Retrieves the final answer from the Orchestrator.
- async stream_logs(self) -> AsyncGenerator[Dict[str, Any], None]: Streams logs from the system as they are generated.
- get_all_logs(self) -> List[Dict[str, Any]]: Retrieves all logs that have been collected so far.
We show an example of how to use the M | Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/interface/README.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this code content | from magentic_one_helper import MagenticOneHelper
import asyncio
import json
import argparse
import os
async def main(task, logs_dir):
magnetic_one = MagenticOneHelper(logs_dir=logs_dir)
await magnetic_one.initialize()
print("MagenticOne initialized.")
# Create task and log streaming tasks
task_future = asyncio.create_task(magnetic_one.run_task(task))
final_answer = None
# Stream and process logs
async for log_entry in magnetic_one.stream_logs():
print(json.dumps(log_entry, indent=2))
# Wait for task to complete
await task_future
# Get the final answer
final_answer = magnetic_one.get_final_answer()
if final_answer is not None:
print(f"Final answer: {final_answer}")
else:
print("No final answer found in logs.")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run a task with MagenticOneHelper.")
parser.add_argument("task", type=str, help="The task to run")
parser. | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/interface/example_magentic_one_helper.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import asyncio
import logging
import os
from typing import Optional, AsyncGenerator, Dict, Any, List
from datetime import datetime
import json
from dataclasses import asdict
from autogen_core import SingleThreadedAgentRuntime
from autogen_core import EVENT_LOGGER_NAME
from autogen_core import AgentId, AgentProxy
from autogen_core import DefaultTopicId
from autogen_ext.code_executors.local import LocalCommandLineCodeExecutor
from autogen_ext.code_executors.docker import DockerCommandLineCodeExecutor
from autogen_core.code_executor import CodeBlock
from autogen_magentic_one.agents.coder import Coder, Executor
from autogen_magentic_one.agents.file_surfer import FileSurfer
from autogen_magentic_one.agents.multimodal_web_surfer import MultimodalWebSurfer
from autogen_magentic_one.agents.orchestrator import LedgerOrchestrator
from autogen_magentic_one.agents.user_proxy import UserProxy
from autogen_magentic_one.messages import BroadcastMessage
from autogen_magentic_one.utils import LogHandl | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/interface/magentic_one_helper.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import importlib.metadata
ABOUT = "This is Magentic-One."
__version__ = importlib.metadata.version("autogen_magentic_one")
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from dataclasses import dataclass
from typing import Any, Dict, List, Union
from autogen_core import FunctionCall, Image
from autogen_core.models import FunctionExecutionResult, LLMMessage
from pydantic import BaseModel
# Convenience type
UserContent = Union[str, List[Union[str, Image]]]
AssistantContent = Union[str, List[FunctionCall]]
FunctionExecutionContent = List[FunctionExecutionResult]
SystemContent = str
# the below are message types used in MagenticOne
# used by all agents to send messages
class BroadcastMessage(BaseModel):
content: LLMMessage
request_halt: bool = False
# used by orchestrator to obtain a response from an agent
@dataclass
class RequestReplyMessage:
pass
# used by orchestrator to reset an agent
@dataclass
class ResetMessage:
pass
# used by orchestrator to deactivate an agent
@dataclass
class DeactivateMessage:
pass
# orchestrator events
@dataclass
class OrchestrationEvent:
source: str
message: str
MagenticOneMessages = | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/messages.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import json
import logging
import os
from dataclasses import asdict
from datetime import datetime
from typing import Any, Dict, List, Literal
from autogen_core import Image
from autogen_core.logging import LLMCallEvent
from autogen_core.models import (
ChatCompletionClient,
ModelCapabilities, # type: ignore
)
from autogen_ext.models.openai import AzureOpenAIChatCompletionClient, OpenAIChatCompletionClient
from .messages import (
AgentEvent,
AssistantContent,
FunctionExecutionContent,
OrchestrationEvent,
SystemContent,
UserContent,
WebSurferEvent,
)
ENVIRON_KEY_CHAT_COMPLETION_PROVIDER = "CHAT_COMPLETION_PROVIDER"
ENVIRON_KEY_CHAT_COMPLETION_KWARGS_JSON = "CHAT_COMPLETION_KWARGS_JSON"
# The singleton _default_azure_ad_token_provider, which will be created if needed
_default_azure_ad_token_provider = None
# Create a model client based on information provided in environment variables.
def create_completion_client_from_env(env: Dict[str, str] | No | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/utils.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
|
Analyze this code content | import asyncio
import logging
from typing import Any
from autogen_core import EVENT_LOGGER_NAME, MessageContext, RoutedAgent, message_handler
from autogen_magentic_one.messages import (
AgentEvent,
BroadcastMessage,
DeactivateMessage,
MagenticOneMessages,
RequestReplyMessage,
ResetMessage,
)
class MagenticOneBaseAgent(RoutedAgent):
"""An agent that optionally ensures messages are handled non-concurrently in the order they arrive."""
def __init__(
self,
description: str,
handle_messages_concurrently: bool = False,
) -> None:
super().__init__(description)
self._handle_messages_concurrently = handle_messages_concurrently
self._enabled = True
self.logger = logging.getLogger(EVENT_LOGGER_NAME + f".{self.id.key}.agent")
if not self._handle_messages_concurrently:
# TODO: make it possible to stop
self._message_queue = asyncio.Queue[tuple[MagenticOneMessages, Message | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/base_agent.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import logging
import time
from typing import List, Optional
from autogen_core import EVENT_LOGGER_NAME, AgentProxy, CancellationToken, MessageContext
from autogen_core.models import AssistantMessage, LLMMessage, UserMessage
from ..messages import BroadcastMessage, OrchestrationEvent, RequestReplyMessage, ResetMessage
from ..utils import message_content_to_str
from .base_agent import MagenticOneBaseAgent
class BaseOrchestrator(MagenticOneBaseAgent):
"""Base class for orchestrator that manage a group of agents."""
def __init__(
self,
agents: List[AgentProxy],
description: str = "Base orchestrator",
max_rounds: int = 20,
max_time: float = float("inf"),
handle_messages_concurrently: bool = False,
) -> None:
super().__init__(description, handle_messages_concurrently=handle_messages_concurrently)
self._agents = agents
self._max_rounds = max_rounds
self._max_time = max_time
self._num_roun | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/base_orchestrator.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from typing import List, Tuple
from autogen_core import CancellationToken, MessageContext, TopicId
from autogen_core.models import (
AssistantMessage,
LLMMessage,
UserMessage,
)
from autogen_magentic_one.messages import (
BroadcastMessage,
RequestReplyMessage,
ResetMessage,
UserContent,
)
from ..utils import message_content_to_str
from .base_agent import MagenticOneBaseAgent
class BaseWorker(MagenticOneBaseAgent):
"""Base agent that handles the MagenticOne worker behavior protocol."""
def __init__(
self,
description: str,
handle_messages_concurrently: bool = False,
) -> None:
super().__init__(description, handle_messages_concurrently=handle_messages_concurrently)
self._chat_history: List[LLMMessage] = []
async def _handle_broadcast(self, message: BroadcastMessage, ctx: MessageContext) -> None:
assert isinstance(message.content, UserMessage)
self._chat_history.append(message.conten | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/base_worker.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import re
from typing import Awaitable, Callable, List, Literal, Tuple, Union
from autogen_core import CancellationToken, default_subscription
from autogen_core.code_executor import CodeBlock, CodeExecutor
from autogen_core.models import (
ChatCompletionClient,
SystemMessage,
UserMessage,
)
from ..messages import UserContent
from ..utils import message_content_to_str
from .base_worker import BaseWorker
@default_subscription
class Coder(BaseWorker):
"""An agent that can write code or text to solve tasks without additional tools."""
DEFAULT_DESCRIPTION = "A helpful and general-purpose AI assistant that has strong language skills, Python skills, and Linux command line skills."
DEFAULT_SYSTEM_MESSAGES = [
SystemMessage(
content="""You are a helpful AI assistant.
Solve tasks using your coding and language skills.
In the following cases, suggest python code (in a python coding block) or shell script (in a sh coding block) for the user to exec | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/coder.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import json
from typing import Any, Dict, List, Optional
from autogen_core import AgentProxy, CancellationToken, MessageContext, TopicId, default_subscription
from autogen_core.models import (
AssistantMessage,
ChatCompletionClient,
LLMMessage,
SystemMessage,
UserMessage,
)
from ..messages import BroadcastMessage, OrchestrationEvent, ResetMessage
from .base_orchestrator import BaseOrchestrator
from .orchestrator_prompts import (
ORCHESTRATOR_CLOSED_BOOK_PROMPT,
ORCHESTRATOR_GET_FINAL_ANSWER,
ORCHESTRATOR_LEDGER_PROMPT,
ORCHESTRATOR_PLAN_PROMPT,
ORCHESTRATOR_SYNTHESIZE_PROMPT,
ORCHESTRATOR_SYSTEM_MESSAGE,
ORCHESTRATOR_UPDATE_FACTS_PROMPT,
ORCHESTRATOR_UPDATE_PLAN_PROMPT,
)
@default_subscription
class RoundRobinOrchestrator(BaseOrchestrator):
"""A simple orchestrator that selects agents in a round-robin fashion."""
def __init__(
self,
agents: List[AgentProxy],
description: str = "Round robin orchestr | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/orchestrator.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | ORCHESTRATOR_SYSTEM_MESSAGE = ""
ORCHESTRATOR_CLOSED_BOOK_PROMPT = """Below I will present you a request. Before we begin addressing the request, please answer the following pre-survey to the best of your ability. Keep in mind that you are Ken Jennings-level with trivia, and Mensa-level with puzzles, so there should be a deep well to draw from.
Here is the request:
{task}
Here is the pre-survey:
1. Please list any specific facts or figures that are GIVEN in the request itself. It is possible that there are none.
2. Please list any facts that may need to be looked up, and WHERE SPECIFICALLY they might be found. In some cases, authoritative sources are mentioned in the request itself.
3. Please list any facts that may need to be derived (e.g., via logical deduction, simulation, or computation)
4. Please list any facts that are recalled from memory, hunches, well-reasoned guesses, etc.
When answering this survey, keep in mind that "facts" will typically be specific | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/orchestrator_prompts.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import asyncio
from typing import Tuple
from autogen_core import CancellationToken, default_subscription
from ..messages import UserContent
from .base_worker import BaseWorker
@default_subscription
class UserProxy(BaseWorker):
"""An agent that allows the user to play the role of an agent in the conversation via input."""
DEFAULT_DESCRIPTION = "A human user."
def __init__(
self,
description: str = DEFAULT_DESCRIPTION,
) -> None:
super().__init__(description)
async def _generate_reply(self, cancellation_token: CancellationToken) -> Tuple[bool, UserContent]:
"""Respond to a reply request."""
# Make an inference to the model.
response = await self.ainput("User input ('exit' to quit): ")
response = response.strip()
return response == "exit", response
async def ainput(self, prompt: str) -> str:
return await asyncio.to_thread(input, f"{prompt} ")
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/user_proxy.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from .file_surfer import FileSurfer
__all__ = ["FileSurfer"]
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/file_surfer/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from autogen_core.tools import ParametersSchema, ToolSchema
TOOL_OPEN_LOCAL_FILE = ToolSchema(
name="open_local_file",
description="Open a local file at a path in the text-based browser and return current viewport content.",
parameters=ParametersSchema(
type="object",
properties={
"path": {
"type": "string",
"description": "The relative or absolute path of a local file to visit.",
},
},
required=["path"],
),
)
TOOL_PAGE_UP = ToolSchema(
name="page_up",
description="Scroll the viewport UP one page-length in the current file and return the new viewport content.",
)
TOOL_PAGE_DOWN = ToolSchema(
name="page_down",
description="Scroll the viewport DOWN one page-length in the current file and return the new viewport content.",
)
TOOL_FIND_ON_PAGE_CTRL_F = ToolSchema(
name="find_on_page_ctrl_f",
description="Scroll the viewport to the first occurrence of the se | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/file_surfer/_tools.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import json
import time
from typing import List, Optional, Tuple
from autogen_core import CancellationToken, FunctionCall, default_subscription
from autogen_core.models import (
ChatCompletionClient,
SystemMessage,
UserMessage,
)
from ...markdown_browser import RequestsMarkdownBrowser
from ..base_worker import BaseWorker
# from typing_extensions import Annotated
from ._tools import TOOL_FIND_NEXT, TOOL_FIND_ON_PAGE_CTRL_F, TOOL_OPEN_LOCAL_FILE, TOOL_PAGE_DOWN, TOOL_PAGE_UP
@default_subscription
class FileSurfer(BaseWorker):
"""An agent that uses tools to read and navigate local files."""
DEFAULT_DESCRIPTION = "An agent that can handle local files."
DEFAULT_SYSTEM_MESSAGES = [
SystemMessage(
content="""
You are a helpful AI Assistant.
When given a user query, use available functions to help the user with their request."""
),
]
def __init__(
self,
model_client: ChatCompletionClient,
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/file_surfer/file_surfer.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from .multimodal_web_surfer import MultimodalWebSurfer
__all__ = ("MultimodalWebSurfer",)
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/multimodal_web_surfer/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import base64
import hashlib
import io
import json
import logging
import os
import pathlib
import re
import time
import traceback
from typing import Any, BinaryIO, Dict, List, Optional, Tuple, Union, cast # Any, Callable, Dict, List, Literal, Tuple
from urllib.parse import quote_plus # parse_qs, quote, unquote, urlparse, urlunparse
import aiofiles
from autogen_core import EVENT_LOGGER_NAME, CancellationToken, FunctionCall, default_subscription
from autogen_core import Image as AGImage
from autogen_core.models import (
AssistantMessage,
ChatCompletionClient,
LLMMessage,
SystemMessage,
UserMessage,
)
from PIL import Image
from playwright._impl._errors import Error as PlaywrightError
from playwright._impl._errors import TimeoutError
# from playwright._impl._async_base.AsyncEventInfo
from playwright.async_api import BrowserContext, Download, Page, Playwright, async_playwright
# TODO: Fix mdconvert
from ...markdown_browser import MarkdownConverter # type: ignore
fr | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/multimodal_web_surfer/multimodal_web_surfer.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import io
import random
from typing import BinaryIO, Dict, List, Tuple, cast
from PIL import Image, ImageDraw, ImageFont
from .types import DOMRectangle, InteractiveRegion
TOP_NO_LABEL_ZONE = 20 # Don't print any labels close the top of the page
def add_set_of_mark(
screenshot: bytes | Image.Image | io.BufferedIOBase, ROIs: Dict[str, InteractiveRegion]
) -> Tuple[Image.Image, List[str], List[str], List[str]]:
if isinstance(screenshot, Image.Image):
return _add_set_of_mark(screenshot, ROIs)
if isinstance(screenshot, bytes):
screenshot = io.BytesIO(screenshot)
# TODO: Not sure why this cast was needed, but by this point screenshot is a binary file-like object
image = Image.open(cast(BinaryIO, screenshot))
comp, visible_rects, rects_above, rects_below = _add_set_of_mark(image, ROIs)
image.close()
return comp, visible_rects, rects_above, rects_below
def _add_set_of_mark(
screenshot: Image.Image, ROIs: Dict[str, InteractiveRegion | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/multimodal_web_surfer/set_of_mark.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from typing import Any, Dict
# TODO Why does pylance fail if I import from autogen_core.tools instead?
from autogen_core.tools._base import ParametersSchema, ToolSchema
def _load_tool(tooldef: Dict[str, Any]) -> ToolSchema:
return ToolSchema(
name=tooldef["function"]["name"],
description=tooldef["function"]["description"],
parameters=ParametersSchema(
type="object",
properties=tooldef["function"]["parameters"]["properties"],
required=tooldef["function"]["parameters"]["required"],
),
)
TOOL_VISIT_URL: ToolSchema = _load_tool(
{
"type": "function",
"function": {
"name": "visit_url",
"description": "Navigate directly to a provided URL using the browser's address bar. Prefer this tool over other navigation techniques in cases where the user provides a fully-qualified URL (e.g., choose it over clicking links, or inputing queries into search boxes).",
"para | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/multimodal_web_surfer/tool_definitions.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from typing import Any, Dict, List, TypedDict, Union
class DOMRectangle(TypedDict):
x: Union[int, float]
y: Union[int, float]
width: Union[int, float]
height: Union[int, float]
top: Union[int, float]
right: Union[int, float]
bottom: Union[int, float]
left: Union[int, float]
class VisualViewport(TypedDict):
height: Union[int, float]
width: Union[int, float]
offsetLeft: Union[int, float]
offsetTop: Union[int, float]
pageLeft: Union[int, float]
pageTop: Union[int, float]
scale: Union[int, float]
clientWidth: Union[int, float]
clientHeight: Union[int, float]
scrollWidth: Union[int, float]
scrollHeight: Union[int, float]
class InteractiveRegion(TypedDict):
tag_name: str
role: str
aria_name: str
v_scrollable: bool
rects: List[DOMRectangle]
# Helper functions for dealing with JSON. Not sure there's a better way?
def _get_str(d: Any, k: str) -> str:
val = d[k]
assert isinstance(val | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/agents/multimodal_web_surfer/types.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from .abstract_markdown_browser import AbstractMarkdownBrowser
from .markdown_search import AbstractMarkdownSearch, BingMarkdownSearch
# TODO: Fix mdconvert
from .mdconvert import ( # type: ignore
DocumentConverterResult,
FileConversionException,
MarkdownConverter,
UnsupportedFormatException,
)
from .requests_markdown_browser import RequestsMarkdownBrowser
__all__ = (
"AbstractMarkdownBrowser",
"RequestsMarkdownBrowser",
"AbstractMarkdownSearch",
"BingMarkdownSearch",
"MarkdownConverter",
"UnsupportedFormatException",
"FileConversionException",
"DocumentConverterResult",
)
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/markdown_browser/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from abc import ABC, abstractmethod
from typing import Union
class AbstractMarkdownBrowser(ABC):
"""
An abstract class for a Markdown web browser.
All MarkdownBrowers work by:
(1) fetching a web page by URL (via requests, Selenium, Playwright, etc.)
(2) converting the page's HTML or DOM to Markdown
(3) operating on the Markdown
Such browsers are simple, and suitable for read-only agentic use.
They cannot be used to interact with complex web applications.
"""
@abstractmethod
def __init__(self) -> None:
pass
@property
@abstractmethod
def address(self) -> str:
pass
@abstractmethod
def set_address(self, uri_or_path: str) -> None:
pass
@property
@abstractmethod
def viewport(self) -> str:
pass
@property
@abstractmethod
def page_content(self) -> str:
pass
@abstractmethod
def page_down(self) -> None:
pass
@abstractmethod
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/markdown_browser/abstract_markdown_browser.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import logging
import os
import re
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, cast
from urllib.parse import quote, quote_plus, unquote, urlparse, urlunparse
import requests
# TODO: Fix these types
from .mdconvert import MarkdownConverter # type: ignore
logger = logging.getLogger(__name__)
class AbstractMarkdownSearch(ABC):
"""
An abstract class for providing search capabilities to a Markdown browser.
"""
@abstractmethod
def search(self, query: str) -> str:
pass
class BingMarkdownSearch(AbstractMarkdownSearch):
"""
Provides Bing web search capabilities to Markdown browsers.
"""
def __init__(self, bing_api_key: Optional[str] = None, interleave_results: bool = True):
"""
Perform a Bing web search, and return the results formatted in Markdown.
Args:
bing_api_key: key for the Bing search API. If omitted, an attempt is made to read the key from the BING_API_KEY en | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/markdown_browser/markdown_search.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # type: ignore
import base64
import binascii
import copy
import html
import json
import mimetypes
import os
import re
import shutil
import subprocess
import sys
import tempfile
from typing import Any, Dict, List, Optional, Union
from urllib.parse import parse_qs, quote, unquote, urlparse, urlunparse
import mammoth
import markdownify
import pandas as pd
import pdfminer
import pdfminer.high_level
import pptx
# File-format detection
import puremagic
import requests
from bs4 import BeautifulSoup
# Optional Transcription support
try:
import pydub
import speech_recognition as sr
IS_AUDIO_TRANSCRIPTION_CAPABLE = True
except ModuleNotFoundError:
pass
# Optional YouTube transcription support
try:
from youtube_transcript_api import YouTubeTranscriptApi
IS_YOUTUBE_TRANSCRIPT_CAPABLE = True
except ModuleNotFoundError:
pass
class _CustomMarkdownify(markdownify.MarkdownConverter):
"""
A custom version of markdownify's MarkdownConverter. Changes include:
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/markdown_browser/mdconvert.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # ruff: noqa: E722
import datetime
import html
import io
import mimetypes
import os
import pathlib
import re
import time
import traceback
import uuid
from typing import Any, Dict, List, Optional, Tuple, Union
from urllib.parse import unquote, urljoin, urlparse
import pathvalidate
import requests
from .abstract_markdown_browser import AbstractMarkdownBrowser
from .markdown_search import AbstractMarkdownSearch, BingMarkdownSearch
# TODO: Fix unfollowed import
from .mdconvert import FileConversionException, MarkdownConverter, UnsupportedFormatException # type: ignore
class RequestsMarkdownBrowser(AbstractMarkdownBrowser):
"""
(In preview) An extremely simple Python requests-powered Markdown web browser.
This browser cannot run JavaScript, compute CSS, etc. It simply fetches the HTML document, and converts it to Markdown.
See AbstractMarkdownBrowser for more details.
"""
# TODO: Fix unfollowed import
def __init__( # type: ignore
self,
sta | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/src/autogen_magentic_one/markdown_browser/requests_markdown_browser.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | #!/usr/bin/env python3 -m pytest
import os
import pytest
from autogen_magentic_one.markdown_browser import BingMarkdownSearch
skip_all = False
bing_api_key = None
if "BING_API_KEY" in os.environ:
bing_api_key = os.environ["BING_API_KEY"]
del os.environ["BING_API_KEY"]
skip_api = bing_api_key is None
BING_QUERY = "Microsoft wikipedia"
BING_STRING = f"A Bing search for '{BING_QUERY}' found"
BING_EXPECTED_RESULT = "https://en.wikipedia.org/wiki/Microsoft"
@pytest.mark.skipif(
skip_api,
reason="skipping tests that require a Bing API key",
)
def test_bing_markdown_search_api() -> None:
search_engine = BingMarkdownSearch(bing_api_key=bing_api_key)
results = search_engine.search(BING_QUERY)
assert BING_STRING in results
assert BING_EXPECTED_RESULT in results
if __name__ == "__main__":
"""Runs this file's tests from the command line."""
test_bing_markdown_search_api()
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/tests/browser_utils/test_bing_markdown_search.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | #!/usr/bin/env python3 -m pytest
import io
import os
import shutil
import pytest
import requests
from autogen_magentic_one.markdown_browser import MarkdownConverter
skip_all = False
skip_exiftool = shutil.which("exiftool") is None
TEST_FILES_DIR = os.path.join(os.path.dirname(__file__), "test_files")
JPG_TEST_EXIFTOOL = {
"Author": "AutoGen Authors",
"Title": "AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation",
"Description": "AutoGen enables diverse LLM-based applications",
"ImageSize": "1615x1967",
"DateTimeOriginal": "2024:03:14 22:10:00",
}
PDF_TEST_URL = "https://arxiv.org/pdf/2308.08155v2.pdf"
PDF_TEST_STRINGS = ["While there is contemporaneous exploration of multi-agent approaches"]
YOUTUBE_TEST_URL = "https://www.youtube.com/watch?v=V2qZ_lgxTzg"
YOUTUBE_TEST_STRINGS = [
"## AutoGen FULL Tutorial with Python (Step-By-Step)",
"This is an intermediate tutorial for installing and using AutoGen locally",
"PT15M4S",
"t | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/tests/browser_utils/test_mdconvert.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | #!/usr/bin/env python3 -m pytest
import hashlib
import math
import os
import pathlib
import re
import pytest
import requests
from autogen_magentic_one.markdown_browser import BingMarkdownSearch, RequestsMarkdownBrowser
BLOG_POST_URL = "https://microsoft.github.io/autogen/0.2/blog/2023/04/21/LLM-tuning-math"
BLOG_POST_TITLE = "Does Model and Inference Parameter Matter in LLM Applications? - A Case Study for MATH | AutoGen"
BLOG_POST_STRING = "Large language models (LLMs) are powerful tools that can generate natural language texts for various applications, such as chatbots, summarization, translation, and more. GPT-4 is currently the state of the art LLM in the world. Is model selection irrelevant? What about inference parameters?"
BLOG_POST_FIND_ON_PAGE_QUERY = "an example where high * complex"
BLOG_POST_FIND_ON_PAGE_MATCH = "an example where high cost can easily prevent a generic complex"
WIKIPEDIA_URL = "https://en.wikipedia.org/wiki/Microsoft"
WIKIPEDIA_TITLE = "Microsoft"
WIKIPE | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/tests/browser_utils/test_requests_markdown_browser.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | skip_openai: bool = False
skip_redis: bool = False
skip_docker: bool = False
reason: str = "requested to skip"
MOCK_OPEN_AI_API_KEY: str = "sk-mockopenaiAPIkeyinexpectedformatfortestingonly"
MOCK_CHAT_COMPLETION_KWARGS: str = """
{
"api_key": "sk-mockopenaiAPIkeyinexpectedformatfortestingonly",
"model": "gpt-4o-2024-05-13"
}
"""
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/tests/headless_web_surfer/conftest.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | #!/usr/bin/env python3 -m pytest
import asyncio
import os
import re
from json import dumps
from math import ceil
from typing import Mapping
import pytest
from autogen_core import AgentId, AgentProxy, FunctionCall, SingleThreadedAgentRuntime
from autogen_core.models import (
UserMessage,
)
from autogen_core.tools._base import ToolSchema
from autogen_magentic_one.agents.multimodal_web_surfer import MultimodalWebSurfer
from autogen_magentic_one.agents.multimodal_web_surfer.tool_definitions import (
TOOL_PAGE_DOWN,
TOOL_PAGE_UP,
TOOL_READ_PAGE_AND_ANSWER,
TOOL_SUMMARIZE_PAGE,
TOOL_VISIT_URL,
TOOL_WEB_SEARCH,
)
from autogen_magentic_one.agents.orchestrator import RoundRobinOrchestrator
from autogen_magentic_one.agents.user_proxy import UserProxy
from autogen_magentic_one.messages import BroadcastMessage
from autogen_magentic_one.utils import (
ENVIRON_KEY_CHAT_COMPLETION_KWARGS_JSON,
ENVIRON_KEY_CHAT_COMPLETION_PROVIDER,
create_completion_client_fro | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-magentic-one/tests/headless_web_surfer/test_web_surfer.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this document content | # AutoGen Studio
[![PyPI version](https://badge.fury.io/py/autogenstudio.svg)](https://badge.fury.io/py/autogenstudio)
[![Downloads](https://static.pepy.tech/badge/autogenstudio/week)](https://pepy.tech/project/autogenstudio)
![ARA](./docs/ags_screen.png)
AutoGen Studio is an AutoGen-powered AI app (user interface) to help you rapidly prototype AI agents, enhance them with skills, compose them into workflows and interact with them to accomplish tasks. It is built on top of the [AutoGen](https://microsoft.github.io/autogen) framework, which is a toolkit for building AI agents.
Code for AutoGen Studio is on GitHub at [microsoft/autogen](https://github.com/microsoft/autogen/tree/main/python/packages/autogen-studio)
> **Note**: AutoGen Studio is meant to help you rapidly prototype multi-agent workflows and demonstrate an example of end user interfaces built with AutoGen. It is not meant to be a production-ready app.
> [!WARNING]
> AutoGen Studio is currently under active development | Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/README.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this code content | from setuptools import setup
setup()
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/setup.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from .database.db_manager import DatabaseManager
from .datamodel import Agent, AgentConfig, Model, ModelConfig, Team, TeamConfig, Tool, ToolConfig
from .teammanager import TeamManager
from .version import __version__
__all__ = [
"Tool",
"Model",
"DatabaseManager",
"Team",
"Agent",
"ToolConfig",
"ModelConfig",
"TeamConfig",
"AgentConfig",
"TeamManager",
"__version__",
]
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import os
from typing import Optional
import typer
import uvicorn
from typing_extensions import Annotated
from .version import VERSION
app = typer.Typer()
@app.command()
def ui(
host: str = "127.0.0.1",
port: int = 8081,
workers: int = 1,
reload: Annotated[bool, typer.Option("--reload")] = False,
docs: bool = True,
appdir: str = None,
database_uri: Optional[str] = None,
upgrade_database: bool = False,
):
"""
Run the AutoGen Studio UI.
Args:
host (str, optional): Host to run the UI on. Defaults to 127.0.0.1 (localhost).
port (int, optional): Port to run the UI on. Defaults to 8081.
workers (int, optional): Number of workers to run the UI with. Defaults to 1.
reload (bool, optional): Whether to reload the UI on code changes. Defaults to False.
docs (bool, optional): Whether to generate API docs. Defaults to False.
appdir (str, optional): Path to the AutoGen Studio app directory. Defaults to | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/cli.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import time
from typing import AsyncGenerator, Callable, Optional, Union
from autogen_agentchat.base import TaskResult
from autogen_agentchat.messages import AgentEvent, ChatMessage
from autogen_core import CancellationToken
from .database import Component, ComponentFactory
from .datamodel import ComponentConfigInput, TeamResult
class TeamManager:
def __init__(self) -> None:
self.component_factory = ComponentFactory()
async def _create_team(self, team_config: ComponentConfigInput, input_func: Optional[Callable] = None) -> Component:
"""Create team instance with common setup logic"""
return await self.component_factory.load(team_config, input_func=input_func)
def _create_result(self, task_result: TaskResult, start_time: float) -> TeamResult:
"""Create TeamResult with timing info"""
return TeamResult(task_result=task_result, usage="", duration=time.time() - start_time)
async def run_stream(
self,
task: str,
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/teammanager.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | VERSION = "0.4.0.dev41"
__version__ = VERSION
APP_NAME = "autogenstudio"
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/version.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from .component_factory import Component, ComponentFactory
from .config_manager import ConfigurationManager
from .db_manager import DatabaseManager
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/database/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import json
import logging
from datetime import datetime
from pathlib import Path
from typing import Callable, Dict, List, Literal, Optional, Union
import aiofiles
import yaml
from autogen_agentchat.agents import AssistantAgent, UserProxyAgent
from autogen_agentchat.conditions import (
ExternalTermination,
HandoffTermination,
MaxMessageTermination,
SourceMatchTermination,
StopMessageTermination,
TextMentionTermination,
TimeoutTermination,
TokenUsageTermination,
)
from autogen_agentchat.teams import MagenticOneGroupChat, RoundRobinGroupChat, SelectorGroupChat
from autogen_core.tools import FunctionTool
from autogen_ext.agents.file_surfer import FileSurfer
from autogen_ext.agents.magentic_one import MagenticOneCoderAgent
from autogen_ext.agents.web_surfer import MultimodalWebSurfer
from autogen_ext.models.openai import AzureOpenAIChatCompletionClient, OpenAIChatCompletionClient
from ..datamodel.types import (
AgentConfig,
AgentTypes,
Assistan | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/database/component_factory.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import logging
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from loguru import logger
from ..datamodel.db import Agent, LinkTypes, Model, Team, Tool
from ..datamodel.types import ComponentConfigInput, ComponentTypes, Response
from .component_factory import ComponentFactory
from .db_manager import DatabaseManager
class ConfigurationManager:
"""Manages persistence and relationships of components using ComponentFactory for validation"""
DEFAULT_UNIQUENESS_FIELDS = {
ComponentTypes.MODEL: ["model_type", "model"],
ComponentTypes.TOOL: ["name"],
ComponentTypes.AGENT: ["agent_type", "name"],
ComponentTypes.TEAM: ["team_type", "name"],
}
def __init__(self, db_manager: DatabaseManager, uniqueness_fields: Dict[ComponentTypes, List[str]] = None):
self.db_manager = db_manager
self.component_factory = ComponentFactory()
self.uniqueness_fields = uniqueness_fields or self.DEFAULT_UNIQUENESS_F | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/database/config_manager.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import threading
from datetime import datetime
from pathlib import Path
from typing import Optional
from loguru import logger
from sqlalchemy import exc, func, inspect, text
from sqlmodel import Session, SQLModel, and_, create_engine, select
from ..datamodel import LinkTypes, Response
from .schema_manager import SchemaManager
# from .dbutils import init_db_samples
class DatabaseManager:
_init_lock = threading.Lock()
def __init__(self, engine_uri: str, base_dir: Optional[Path] = None):
"""
Initialize DatabaseManager with database connection settings.
Does not perform any database operations.
Args:
engine_uri: Database connection URI (e.g. sqlite:///db.sqlite3)
base_dir: Base directory for migration files. If None, uses current directory
"""
connection_args = {"check_same_thread": True} if "sqlite" in engine_uri else {}
self.engine = create_engine(engine_uri, connect_args=connection_args)
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/database/db_manager.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import os
import shutil
from pathlib import Path
from typing import List, Optional, Tuple
import sqlmodel
from alembic import command
from alembic.autogenerate import compare_metadata
from alembic.config import Config
from alembic.runtime.migration import MigrationContext
from alembic.script import ScriptDirectory
from alembic.util.exc import CommandError
from loguru import logger
from sqlalchemy import Engine, text
from sqlmodel import SQLModel
class SchemaManager:
"""
Manages database schema validation and migrations using Alembic.
Operations are initiated explicitly by DatabaseManager.
"""
def __init__(
self,
engine: Engine,
base_dir: Optional[Path] = None,
):
"""
Initialize configuration only - no filesystem or DB operations.
Args:
engine: SQLAlchemy engine instance
base_dir: Base directory for Alembic files. If None, uses current working directory
"""
# Convert stri | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/database/schema_manager.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from .db import Agent, LinkTypes, Message, Model, Run, RunStatus, Session, Team, Tool
from .types import (
AgentConfig,
ComponentConfigInput,
MessageConfig,
ModelConfig,
Response,
TeamConfig,
TeamResult,
ToolConfig,
)
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/datamodel/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # defines how core data types in autogenstudio are serialized and stored in the database
from datetime import datetime
from enum import Enum
from typing import List, Optional, Tuple, Type, Union
from uuid import UUID, uuid4
from loguru import logger
from pydantic import BaseModel
from sqlalchemy import ForeignKey, Integer, UniqueConstraint
from sqlmodel import JSON, Column, DateTime, Field, Relationship, SQLModel, func
from .types import AgentConfig, MessageConfig, MessageMeta, ModelConfig, TeamConfig, TeamResult, ToolConfig
# added for python3.11 and sqlmodel 0.0.22 incompatibility
if hasattr(SQLModel, "model_config"):
SQLModel.model_config["protected_namespaces"] = ()
elif hasattr(SQLModel, "Config"):
class CustomSQLModel(SQLModel):
class Config:
protected_namespaces = ()
SQLModel = CustomSQLModel
else:
logger.warning("Unable to set protected_namespaces.")
# pylint: disable=protected-access
class ComponentTypes(Enum):
TEAM = "team"
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/datamodel/db.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from datetime import datetime
from enum import Enum
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from autogen_agentchat.base import TaskResult
from autogen_core.models import ModelCapabilities
from pydantic import BaseModel, Field
class ModelTypes(str, Enum):
OPENAI = "OpenAIChatCompletionClient"
AZUREOPENAI = "AzureOpenAIChatCompletionClient"
class ToolTypes(str, Enum):
PYTHON_FUNCTION = "PythonFunction"
class AgentTypes(str, Enum):
ASSISTANT = "AssistantAgent"
USERPROXY = "UserProxyAgent"
MULTIMODAL_WEBSURFER = "MultimodalWebSurfer"
FILE_SURFER = "FileSurfer"
MAGENTIC_ONE_CODER = "MagenticOneCoderAgent"
class TeamTypes(str, Enum):
ROUND_ROBIN = "RoundRobinGroupChat"
SELECTOR = "SelectorGroupChat"
MAGENTIC_ONE = "MagenticOneGroupChat"
class TerminationTypes(str, Enum):
MAX_MESSAGES = "MaxMessageTermination"
STOP_MESSAGE = "StopMessageTermination"
TEXT_MENTION = "TextMentionTermination"
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/datamodel/types.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/utils/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
|
Analyze this code content | import base64
import hashlib
import os
import re
import shutil
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, List, Tuple, Union
from dotenv import load_dotenv
from loguru import logger
from ..datamodel import Model
from ..version import APP_NAME
def sha256_hash(text: str) -> str:
"""
Compute the MD5 hash of a given text.
:param text: The string to hash
:return: The MD5 hash of the text
"""
return hashlib.sha256(text.encode()).hexdigest()
def check_and_cast_datetime_fields(obj: Any) -> Any:
if hasattr(obj, "created_at") and isinstance(obj.created_at, str):
obj.created_at = str_to_datetime(obj.created_at)
if hasattr(obj, "updated_at") and isinstance(obj.updated_at, str):
obj.updated_at = str_to_datetime(obj.updated_at)
return obj
def str_to_datetime(dt_str: str) -> datetime:
if dt_str[-1] == "Z":
# Replace 'Z' with '+00:00' for UTC timezone
dt_str = dt_str[:-1] + "+00 | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/utils/utils.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
|
Analyze this code content | # api/app.py
import os
from contextlib import asynccontextmanager
from typing import AsyncGenerator
# import logging
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from loguru import logger
from ..version import VERSION
from .config import settings
from .deps import cleanup_managers, init_managers
from .initialization import AppInitializer
from .routes import agents, models, runs, sessions, teams, tools, ws
# Configure logging
# logger = logging.getLogger(__name__)
# logging.basicConfig(level=logging.INFO)
# Initialize application
app_file_path = os.path.dirname(os.path.abspath(__file__))
initializer = AppInitializer(settings, app_file_path)
@asynccontextmanager
async def lifespan(app: FastAPI) -> AsyncGenerator[None, None]:
"""
Lifecycle manager for the FastAPI application.
Handles initialization and cleanup of application resources.
"""
# Startup
logger.info("Initializing applic | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/app.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # api/config.py
from pydantic_settings import BaseSettings
class Settings(BaseSettings):
DATABASE_URI: str = "sqlite:///./autogen.db"
API_DOCS: bool = False
CLEANUP_INTERVAL: int = 300 # 5 minutes
SESSION_TIMEOUT: int = 3600 # 1 hour
CONFIG_DIR: str = "configs" # Default config directory relative to app_root
DEFAULT_USER_ID: str = "[email protected]"
UPGRADE_DATABASE: bool = False
class Config:
env_prefix = "AUTOGENSTUDIO_"
settings = Settings()
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/config.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # api/deps.py
import logging
from contextlib import contextmanager
from typing import Optional
from fastapi import Depends, HTTPException, status
from ..database import ConfigurationManager, DatabaseManager
from ..teammanager import TeamManager
from .config import settings
from .managers.connection import WebSocketManager
logger = logging.getLogger(__name__)
# Global manager instances
_db_manager: Optional[DatabaseManager] = None
_websocket_manager: Optional[WebSocketManager] = None
_team_manager: Optional[TeamManager] = None
# Context manager for database sessions
@contextmanager
def get_db_context():
"""Provide a transactional scope around a series of operations."""
if not _db_manager:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Database manager not initialized"
)
try:
yield _db_manager
except Exception as e:
logger.error(f"Database operation failed: {str(e)}")
raise HTTPExc | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/deps.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # api/initialization.py
import os
from pathlib import Path
from typing import Dict
from dotenv import load_dotenv
from loguru import logger
from pydantic import BaseModel
from .config import Settings
class _AppPaths(BaseModel):
"""Internal model representing all application paths"""
app_root: Path
static_root: Path
user_files: Path
ui_root: Path
config_dir: Path
database_uri: str
class AppInitializer:
"""Handles application initialization including paths and environment setup"""
def __init__(self, settings: Settings, app_path: str):
"""
Initialize the application structure.
Args:
settings: Application settings
app_path: Path to the application code directory
"""
self.settings = settings
self._app_path = Path(app_path)
self._paths = self._init_paths()
self._create_directories()
self._load_environment()
logger.info(f"Initialized application | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/initialization.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # loads a fast api api endpoint with a single endpoint that takes text query and return a response
import json
import os
from fastapi import FastAPI
from ..datamodel import Response
from ..teammanager import TeamManager
app = FastAPI()
team_file_path = os.environ.get("AUTOGENSTUDIO_TEAM_FILE", None)
if team_file_path:
team_manager = TeamManager()
else:
raise ValueError("Team file must be specified")
@app.get("/predict/{task}")
async def predict(task: str):
response = Response(message="Task successfully completed", status=True, data=None)
try:
result_message = await team_manager.run(task=task, team_config=team_file_path)
response.data = result_message
except Exception as e:
response.message = str(e)
response.status = False
return response
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/serve.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from .connection import WebSocketManager
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/managers/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import asyncio
import logging
from datetime import datetime, timezone
from typing import Any, Callable, Dict, Optional, Union
from uuid import UUID
from autogen_agentchat.base._task import TaskResult
from autogen_agentchat.messages import (
AgentEvent,
ChatMessage,
HandoffMessage,
MultiModalMessage,
StopMessage,
TextMessage,
ToolCallExecutionEvent,
ToolCallRequestEvent,
)
from autogen_core import CancellationToken
from autogen_core import Image as AGImage
from fastapi import WebSocket, WebSocketDisconnect
from ...database import DatabaseManager
from ...datamodel import Message, MessageConfig, Run, RunStatus, TeamResult
from ...teammanager import TeamManager
logger = logging.getLogger(__name__)
class WebSocketManager:
"""Manages WebSocket connections and message streaming for team task execution"""
def __init__(self, db_manager: DatabaseManager):
self.db_manager = db_manager
self._connections: Dict[UUID, WebSocket] = {}
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/managers/connection.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/routes/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
|
Analyze this code content | from typing import Dict
from fastapi import APIRouter, Depends, HTTPException
from ...database import DatabaseManager # Add this import
from ...datamodel import Agent, Model, Tool
from ..deps import get_db
router = APIRouter()
@router.get("/")
async def list_agents(user_id: str, db: DatabaseManager = Depends(get_db)) -> Dict:
"""List all agents for a user"""
response = db.get(Agent, filters={"user_id": user_id})
return {"status": True, "data": response.data}
@router.get("/{agent_id}")
async def get_agent(agent_id: int, user_id: str, db: DatabaseManager = Depends(get_db)) -> Dict:
"""Get a specific agent"""
response = db.get(Agent, filters={"id": agent_id, "user_id": user_id})
if not response.status or not response.data:
raise HTTPException(status_code=404, detail="Agent not found")
return {"status": True, "data": response.data[0]}
@router.post("/")
async def create_agent(agent: Agent, db: DatabaseManager = Depends(get_db)) -> Dict:
"""C | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/routes/agents.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # api/routes/gallery.py
from fastapi import APIRouter, Depends, HTTPException
from ...database import DatabaseManager
from ...datamodel import Gallery, GalleryConfig, Response, Run, Session
from ..deps import get_db
router = APIRouter()
@router.post("/")
async def create_gallery_entry(
gallery_data: GalleryConfig, user_id: str, db: DatabaseManager = Depends(get_db)
) -> Response:
# First validate that user owns all runs
for run in gallery_data.runs:
run_result = db.get(Run, filters={"id": run.id})
if not run_result.status or not run_result.data:
raise HTTPException(status_code=404, detail=f"Run {run.id} not found")
# Get associated session to check ownership
session_result = db.get(Session, filters={"id": run_result.data[0].session_id})
if not session_result.status or not session_result.data or session_result.data[0].user_id != user_id:
raise HTTPException(status_code=403, detail=f"Not authorized to add ru | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/routes/gallery.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # api/routes/models.py
from typing import Dict
from fastapi import APIRouter, Depends, HTTPException
from openai import OpenAIError
from ...datamodel import Model
from ..deps import get_db
router = APIRouter()
@router.get("/")
async def list_models(user_id: str, db=Depends(get_db)) -> Dict:
"""List all models for a user"""
response = db.get(Model, filters={"user_id": user_id})
return {"status": True, "data": response.data}
@router.get("/{model_id}")
async def get_model(model_id: int, user_id: str, db=Depends(get_db)) -> Dict:
"""Get a specific model"""
response = db.get(Model, filters={"id": model_id, "user_id": user_id})
if not response.status or not response.data:
raise HTTPException(status_code=404, detail="Model not found")
return {"status": True, "data": response.data[0]}
@router.post("/")
async def create_model(model: Model, db=Depends(get_db)) -> Dict:
"""Create a new model"""
response = db.upsert(model)
if not response.st | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/routes/models.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # /api/runs routes
from typing import Dict
from uuid import UUID
from fastapi import APIRouter, Body, Depends, HTTPException
from pydantic import BaseModel
from ...datamodel import Message, MessageConfig, Run, RunStatus, Session, Team
from ..deps import get_db, get_team_manager, get_websocket_manager
router = APIRouter()
class CreateRunRequest(BaseModel):
session_id: int
user_id: str
@router.post("/")
async def create_run(
request: CreateRunRequest,
db=Depends(get_db),
) -> Dict:
"""Create a new run with initial state"""
session_response = db.get(
Session, filters={"id": request.session_id, "user_id": request.user_id}, return_json=False
)
if not session_response.status or not session_response.data:
raise HTTPException(status_code=404, detail="Session not found")
try:
# Create run with default state
run = db.upsert(
Run(
session_id=request.session_id,
status=RunStatus. | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/routes/runs.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # api/routes/sessions.py
from typing import Dict
from fastapi import APIRouter, Depends, HTTPException
from loguru import logger
from ...datamodel import Message, Run, Session
from ..deps import get_db
router = APIRouter()
@router.get("/")
async def list_sessions(user_id: str, db=Depends(get_db)) -> Dict:
"""List all sessions for a user"""
response = db.get(Session, filters={"user_id": user_id})
return {"status": True, "data": response.data}
@router.get("/{session_id}")
async def get_session(session_id: int, user_id: str, db=Depends(get_db)) -> Dict:
"""Get a specific session"""
response = db.get(Session, filters={"id": session_id, "user_id": user_id})
if not response.status or not response.data:
raise HTTPException(status_code=404, detail="Session not found")
return {"status": True, "data": response.data[0]}
@router.post("/")
async def create_session(session: Session, db=Depends(get_db)) -> Dict:
"""Create a new session"""
response | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/routes/sessions.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # api/routes/teams.py
from typing import Dict
from fastapi import APIRouter, Depends, HTTPException
from ...datamodel import Team
from ..deps import get_db
router = APIRouter()
@router.get("/")
async def list_teams(user_id: str, db=Depends(get_db)) -> Dict:
"""List all teams for a user"""
response = db.get(Team, filters={"user_id": user_id})
return {"status": True, "data": response.data}
@router.get("/{team_id}")
async def get_team(team_id: int, user_id: str, db=Depends(get_db)) -> Dict:
"""Get a specific team"""
response = db.get(Team, filters={"id": team_id, "user_id": user_id})
if not response.status or not response.data:
raise HTTPException(status_code=404, detail="Team not found")
return {"status": True, "data": response.data[0]}
@router.post("/")
async def create_team(team: Team, db=Depends(get_db)) -> Dict:
"""Create a new team"""
response = db.upsert(team)
if not response.status:
raise HTTPException(status_code=40 | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/routes/teams.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # api/routes/tools.py
from typing import Dict
from fastapi import APIRouter, Depends, HTTPException
from ...datamodel import Tool
from ..deps import get_db
router = APIRouter()
@router.get("/")
async def list_tools(user_id: str, db=Depends(get_db)) -> Dict:
"""List all tools for a user"""
response = db.get(Tool, filters={"user_id": user_id})
return {"status": True, "data": response.data}
@router.get("/{tool_id}")
async def get_tool(tool_id: int, user_id: str, db=Depends(get_db)) -> Dict:
"""Get a specific tool"""
response = db.get(Tool, filters={"id": tool_id, "user_id": user_id})
if not response.status or not response.data:
raise HTTPException(status_code=404, detail="Tool not found")
return {"status": True, "data": response.data[0]}
@router.post("/")
async def create_tool(tool: Tool, db=Depends(get_db)) -> Dict:
"""Create a new tool"""
response = db.upsert(tool)
if not response.status:
raise HTTPException(status_code=40 | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/routes/tools.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | # api/ws.py
import asyncio
import json
from datetime import datetime
from uuid import UUID
from fastapi import APIRouter, Depends, WebSocket, WebSocketDisconnect
from loguru import logger
from ...datamodel import Run, RunStatus
from ..deps import get_db, get_websocket_manager
from ..managers import WebSocketManager
router = APIRouter()
@router.websocket("/runs/{run_id}")
async def run_websocket(
websocket: WebSocket,
run_id: UUID,
ws_manager: WebSocketManager = Depends(get_websocket_manager),
db=Depends(get_db),
):
"""WebSocket endpoint for run communication"""
# Verify run exists and is in valid state
run_response = db.get(Run, filters={"id": run_id}, return_json=False)
if not run_response.status or not run_response.data:
logger.warning(f"Run not found: {run_id}")
await websocket.close(code=4004, reason="Run not found")
return
run = run_response.data[0]
if run.status not in [RunStatus.CREATED, RunStatus.ACTIVE]:
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/autogenstudio/web/routes/ws.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this document content | ## 🚀 Running UI in Dev Mode
Run the UI in dev mode (make changes and see them reflected in the browser with hotreloading):
- yarn install
- yarn start
This should start the server on port 8000.
## Design Elements
- **Gatsby**: The app is created in Gatsby. A guide on bootstrapping a Gatsby app can be found here - https://www.gatsbyjs.com/docs/quick-start/.
This provides an overview of the project file structure include functionality of files like `gatsby-config.js`, `gatsby-node.js`, `gatsby-browser.js` and `gatsby-ssr.js`.
- **TailwindCSS**: The app uses TailwindCSS for styling. A guide on using TailwindCSS with Gatsby can be found here - https://tailwindcss.com/docs/guides/gatsby.https://tailwindcss.com/docs/guides/gatsby . This will explain the functionality in tailwind.config.js and postcss.config.js.
## Modifying the UI, Adding Pages
The core of the app can be found in the `src` folder. To add pages, add a new folder in `src/pages` and add a `index.js` file. This will be | Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/frontend/README.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this code content | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/tests/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
|
Analyze this code content | import pytest
from typing import List
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.teams import RoundRobinGroupChat, SelectorGroupChat, MagenticOneGroupChat
from autogen_agentchat.conditions import MaxMessageTermination, StopMessageTermination, TextMentionTermination
from autogen_core.tools import FunctionTool
from autogenstudio.datamodel.types import (
AssistantAgentConfig,
OpenAIModelConfig,
RoundRobinTeamConfig,
SelectorTeamConfig,
MagenticOneTeamConfig,
ToolConfig,
MaxMessageTerminationConfig,
StopMessageTerminationConfig,
TextMentionTerminationConfig,
CombinationTerminationConfig,
ModelTypes,
AgentTypes,
TeamTypes,
TerminationTypes,
ToolTypes,
ComponentTypes,
)
from autogenstudio.database import ComponentFactory
@pytest.fixture
def component_factory():
return ComponentFactory()
@pytest.fixture
def sample_tool_config():
return ToolConfig(
name="calculator",
de | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/tests/test_component_factory.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import os
import asyncio
import pytest
from sqlmodel import Session, text, select
from typing import Generator
from autogenstudio.database import DatabaseManager
from autogenstudio.datamodel.types import (
ToolConfig,
OpenAIModelConfig,
RoundRobinTeamConfig,
StopMessageTerminationConfig,
AssistantAgentConfig,
ModelTypes, AgentTypes, TeamTypes, ComponentTypes,
TerminationTypes, ToolTypes
)
from autogenstudio.datamodel.db import Model, Tool, Agent, Team, LinkTypes
@pytest.fixture
def test_db() -> Generator[DatabaseManager, None, None]:
"""Fixture for test database"""
db_path = "test.db"
db = DatabaseManager(f"sqlite:///{db_path}")
db.reset_db()
# Initialize database instead of create_db_and_tables
db.initialize_database(auto_upgrade=False)
yield db
# Clean up
asyncio.run(db.close())
db.reset_db()
try:
if os.path.exists(db_path):
os.remove(db_path)
except Exception as e:
print(f"War | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-studio/tests/test_db_manager.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this document content | # test-utils
| Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-test-utils/README.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this code content | from __future__ import annotations
from dataclasses import dataclass
from typing import Any
from autogen_core import (
BaseAgent,
Component,
DefaultTopicId,
MessageContext,
RoutedAgent,
default_subscription,
message_handler,
)
from autogen_core._component_config import ComponentModel
from pydantic import BaseModel
@dataclass
class MessageType: ...
@dataclass
class CascadingMessageType:
round: int
@dataclass
class ContentMessage:
content: str
class LoopbackAgent(RoutedAgent):
def __init__(self) -> None:
super().__init__("A loop back agent.")
self.num_calls = 0
self.received_messages: list[Any] = []
@message_handler
async def on_new_message(
self, message: MessageType | ContentMessage, ctx: MessageContext
) -> MessageType | ContentMessage:
self.num_calls += 1
self.received_messages.append(message)
return message
@default_subscription
class LoopbackAgentWithDefaultSubsc | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-test-utils/src/autogen_test_utils/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | from typing import List, Sequence
import pytest
from opentelemetry.sdk.trace import ReadableSpan, TracerProvider
from opentelemetry.sdk.trace.export import SimpleSpanProcessor, SpanExporter, SpanExportResult
class MyTestExporter(SpanExporter):
def __init__(self) -> None:
self.exported_spans: List[ReadableSpan] = []
def export(self, spans: Sequence[ReadableSpan]) -> SpanExportResult:
self.exported_spans.extend(spans)
return SpanExportResult.SUCCESS
def shutdown(self) -> None:
pass
def clear(self) -> None:
"""Clears the list of exported spans."""
self.exported_spans.clear()
def get_exported_spans(self) -> List[ReadableSpan]:
"""Returns the list of exported spans."""
return self.exported_spans
def get_test_tracer_provider(exporter: MyTestExporter) -> TracerProvider:
tracer_provider = TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(exporter))
return tracer_provid | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/autogen-test-utils/src/autogen_test_utils/telemetry_test_utils.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this document content | # component-schema-gen
This is a tool to generate schema for built in components.
Simply run `gen-component-schema` and it will print the schema to be used.
| Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/packages/component-schema-gen/README.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this code content | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/component-schema-gen/src/component_schema_gen/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
|
Analyze this code content | import json
import sys
from typing import Any, DefaultDict, Dict, List, TypeVar
from autogen_core import ComponentModel
from autogen_core._component_config import (
WELL_KNOWN_PROVIDERS,
ComponentConfigImpl,
_type_to_provider_str, # type: ignore
)
from autogen_ext.models.openai import AzureOpenAIChatCompletionClient, AzureTokenProvider, OpenAIChatCompletionClient
from pydantic import BaseModel
all_defs: Dict[str, Any] = {}
T = TypeVar("T", bound=BaseModel)
def build_specific_component_schema(component: type[ComponentConfigImpl[T]], provider_str: str) -> Dict[str, Any]:
model = component.component_config_schema # type: ignore
model_schema = model.model_json_schema()
component_model_schema = ComponentModel.model_json_schema()
if "$defs" not in component_model_schema:
component_model_schema["$defs"] = {}
if "$defs" not in model_schema:
model_schema["$defs"] = {}
component_model_schema["$defs"].update(model_schema["$defs"]) # ty | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/packages/component-schema-gen/src/component_schema_gen/__main__.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this document content | # Building a Multi-Agent Application with AutoGen and Chainlit
In this sample, we will build a simple chat interface that interacts with a `RoundRobinGroupChat` team built using the [AutoGen AgentChat](https://microsoft.github.io/autogen/dev/user-guide/agentchat-user-guide/index.html) api.
![AgentChat](docs/chainlit_autogen.png).
## High-Level Description
The `app.py` script sets up a Chainlit chat interface that communicates with the AutoGen team. When a chat starts, it
- Initializes an AgentChat team.
```python
async def get_weather(city: str) -> str:
return f"The weather in {city} is 73 degrees and Sunny."
assistant_agent = AssistantAgent(
name="assistant_agent",
tools=[get_weather],
model_client=OpenAIChatCompletionClient(
model="gpt-4o-2024-08-06"))
termination = TextMentionTermination("TERMINATE") | MaxMessageTermination(10)
team = RoundRobinGroupChat(
participants=[assistant_agent], termination_condition=termination)
```
- As users interac | Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/samples/agentchat_chainlit/README.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this code content | import chainlit as cl
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import TextMentionTermination, MaxMessageTermination
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_agentchat.base import TaskResult
async def get_weather(city: str) -> str:
return f"The weather in {city} is 73 degrees and Sunny."
@cl.on_chat_start
async def start_chat():
cl.user_session.set(
"prompt_history",
"",
)
async def run_team(query: str):
assistant_agent = AssistantAgent(
name="assistant_agent", tools=[get_weather], model_client=OpenAIChatCompletionClient(model="gpt-4o-2024-08-06")
)
termination = TextMentionTermination("TERMINATE") | MaxMessageTermination(10)
team = RoundRobinGroupChat(participants=[assistant_agent], termination_condition=termination)
response_stream = team.run_stream(task=query)
async for msg in resp | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/samples/agentchat_chainlit/app.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import os
import shutil
from pathlib import Path
import tomli_w
import tomllib
source_dir = os.getcwd()
target_dir = "{{ cookiecutter.__final_destination }}"
shutil.move(source_dir, target_dir)
THIS_FILE_DIR = Path(__file__).parent
# Add the package to the workspace def
workspace_def_path = THIS_FILE_DIR / ".." / ".." / ".." / "pyproject.toml"
with workspace_def_path.open("rb") as f:
config = tomllib.load(f)
config["tool"]["uv"]["sources"]["{{ cookiecutter.package_name }}"] = {"workspace": True}
with workspace_def_path.open("wb") as f:
tomli_w.dump(config, f)
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/templates/new-package/hooks/post_gen_project.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this code content | import re
import sys
from packaging import version
MODULE_REGEX = r"^[a-zA-Z][\-a-zA-Z0-9]+$"
package_name = "{{ cookiecutter.package_name }}"
at_least_one_error = False
if not re.match(MODULE_REGEX, package_name):
print(f'ERROR: "{package_name}" must use kebab case')
at_least_one_error = True
packaging_version = "{{ cookiecutter.version }}"
# Check version format using version.VERSION_PATTERN
if not re.match(version.VERSION_PATTERN, packaging_version, re.VERBOSE | re.IGNORECASE):
print(f'ERROR: "{packaging_version}" is not a valid version string')
at_least_one_error = True
if at_least_one_error:
sys.exit(1)
| Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/templates/new-package/hooks/pre_gen_project.py",
"file_type": ".py",
"source_type": "code"
} |
Analyze this document content | # {{cookiecutter.package_name}}
| Document summary and key points | {
"file_path": "multi_repo_data/autogen/python/templates/new-package/{{cookiecutter.package_name}}/README.md",
"file_type": ".md",
"source_type": "document"
} |
Analyze this code content | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/templates/new-package/{{cookiecutter.package_name}}/src/{{cookiecutter.__project_slug}}/__init__.py",
"file_type": ".py",
"source_type": "code"
} |
|
Analyze this code content | async def test_example() -> None:
assert True | Code analysis and explanation | {
"file_path": "multi_repo_data/autogen/python/templates/new-package/{{cookiecutter.package_name}}/tests/test_example.py",
"file_type": ".py",
"source_type": "code"
} |