fact
stringlengths
13
15.5k
type
stringclasses
9 values
library
stringclasses
15 values
imports
stringlengths
14
7.64k
βŒ€
filename
stringlengths
12
97
symbolic_name
stringlengths
1
78
index_level
int64
0
38.7k
Definition pr1BaseOfFilter {X : UU} : BaseOfFilter X β†’ BaseOfPreFilter X. Proof. intros base. exists (pr1 base). split. - apply (pr1 (pr2 base)). - apply (pr1 (pr2 (pr2 base))). Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
pr1BaseOfFilter
38,500
Lemma BaseOfPreFilter_and {X : UU} (base : BaseOfPreFilter X) : ∏ A B : X β†’ hProp, base A β†’ base B β†’ βˆƒ C : X β†’ hProp, base C Γ— (∏ x, C x β†’ A x ∧ B x). Proof. apply (pr1 (pr2 base)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
BaseOfPreFilter_and
38,501
Lemma BaseOfPreFilter_notempty {X : UU} (base : BaseOfPreFilter X) : βˆƒ A : X β†’ hProp, base A. Proof. apply (pr2 (pr2 base)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
BaseOfPreFilter_notempty
38,502
Lemma BaseOfFilter_and {X : UU} (base : BaseOfFilter X) : ∏ A B : X β†’ hProp, base A β†’ base B β†’ βˆƒ C : X β†’ hProp, base C Γ— (∏ x, C x β†’ A x ∧ B x). Proof. apply (pr1 (pr2 base)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
BaseOfFilter_and
38,503
Lemma BaseOfFilter_notempty {X : UU} (base : BaseOfFilter X) : βˆƒ A : X β†’ hProp, base A. Proof. apply (pr1 (pr2 (pr2 base))). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
BaseOfFilter_notempty
38,504
Lemma BaseOfFilter_notfalse {X : UU} (base : BaseOfFilter X) : ∏ A, base A β†’ βˆƒ x, A x. Proof. apply (pr2 (pr2 (pr2 base))). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
BaseOfFilter_notfalse
38,505
Definition filterbase : (X β†’ hProp) β†’ hProp := Ξ» A : X β†’ hProp, (βˆƒ B : X β†’ hProp, base B Γ— ∏ x, B x β†’ A x).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterbase
38,506
Lemma filterbase_imply : isfilter_imply filterbase. Proof. intros A B H. apply hinhfun. intros A'. exists (pr1 A'). split. - apply (pr1 (pr2 A')). - intros x Hx. apply H. now apply (pr2 (pr2 A')). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterbase_imply
38,507
Lemma filterbase_htrue : isfilter_htrue filterbase. Proof. revert Hempty. apply hinhfun. intros A. exists (pr1 A). split. - apply (pr2 A). - intros. exact tt. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterbase_htrue
38,508
Lemma filterbase_and : isfilter_and filterbase. Proof. intros A B. apply hinhuniv2. intros A' B'. refine (hinhfun _ _). 2: apply Hand. 2: (apply (pr1 (pr2 A'))). 2: (apply (pr1 (pr2 B'))). intros C'. exists (pr1 C'). split. - apply (pr1 (pr2 C')). - intros x Cx ; split. + apply (pr2 (pr2 A')). now refine (pr1 (pr2 (pr2 C') _ _)). + apply (pr2 (pr2 B')). now refine (pr2 (pr2 (pr2 C') _ _)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterbase_and
38,509
Lemma filterbase_notempty : isfilter_notempty filterbase. Proof. intros A. apply hinhuniv. intros B. generalize (Hfalse _ (pr1 (pr2 B))). apply hinhfun. intros x. exists (pr1 x). apply (pr2 (pr2 B)), (pr2 x). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterbase_notempty
38,510
Lemma base_finite_intersection : ∏ L : Sequence (X β†’ hProp), (∏ n, base (L n)) β†’ βˆƒ A, base A Γ— (∏ x, A x β†’ finite_intersection L x). Proof. intros L Hbase. apply (pr2 (finite_intersection_hProp (Ξ» B, βˆƒ A : X β†’ hProp, base A Γ— (∏ x : X, A x β†’ B x)))). - split. + revert Hempty. apply hinhfun. intros A. now exists (pr1 A), (pr2 A). + intros A B. apply hinhuniv2. intros A' B'. generalize (Hand _ _ (pr1 (pr2 A')) (pr1 (pr2 B'))). apply hinhfun. intros C. exists (pr1 C). split. * exact (pr1 (pr2 C)). * intros x Cx. split. ** apply (pr2 (pr2 A')), (pr1 (pr2 (pr2 C) _ Cx)). ** apply (pr2 (pr2 B')), (pr2 (pr2 (pr2 C) _ Cx)). - intros n. apply hinhpr. exists (L n). split. + now apply Hbase. + intros; assumption. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
base_finite_intersection
38,511
Lemma filterbase_genetated : filterbase = filtergenerated base. Proof. apply funextfun ; intros P. apply hPropUnivalence. - apply hinhfun. intros A. exists (singletonSequence (pr1 A)). split. + intros m ; simpl. exact (pr1 (pr2 A)). + intros x Ax. apply (pr2 (pr2 A)). simple refine (Ax _). now exists 0%nat. - apply hinhuniv. intros L. generalize (base_finite_intersection (pr1 L) (pr1 (pr2 L))). apply hinhfun. intros A. exists (pr1 A) ; split. + exact (pr1 (pr2 A)). + intros x Ax. now apply (pr2 (pr2 L)), (pr2 (pr2 A)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterbase_genetated
38,512
Lemma filterbase_generated_hypothesis : ∏ L' : Sequence (X β†’ hProp), (∏ m : stn (length L'), base (L' m)) β†’ βˆƒ x : X, finite_intersection L' x. Proof. intros L Hbase. generalize (base_finite_intersection L Hbase). apply hinhuniv. intros A. generalize (Hfalse _ (pr1 (pr2 A))). apply hinhfun. intros x. exists (pr1 x). apply (pr2 (pr2 A)). exact (pr2 x). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterbase_generated_hypothesis
38,513
Definition PreFilterBase {X : UU} (base : BaseOfPreFilter X) : PreFilter X. Proof. simple refine (make_PreFilter _ _ _ _). - apply (filterbase base). - apply filterbase_imply. - apply filterbase_htrue, BaseOfPreFilter_notempty. - apply filterbase_and. intros A B. now apply BaseOfPreFilter_and. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterBase
38,514
Definition FilterBase {X : UU} (base : BaseOfFilter X) : Filter X. Proof. intros. exists (pr1 (PreFilterBase base)). split. - simple refine (pr2 (PreFilterBase base)). - apply filterbase_notempty. intros A Ha. simple refine (BaseOfFilter_notfalse _ _ _). + apply base. + apply Ha. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterBase
38,515
Lemma PreFilterBase_Generated {X : UU} (base : BaseOfPreFilter X) : PreFilterBase base = PreFilterGenerated base. Proof. simple refine (subtypePath_prop (B := Ξ» _, make_hProp _ _) _). - apply isapropdirprod. + apply isaprop_isfilter_imply. + apply isaprop_isfilter_finite_intersection. - simpl. apply filterbase_genetated. + intros A B. apply (BaseOfPreFilter_and base). + apply (BaseOfPreFilter_notempty base). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterBase_Generated
38,516
Lemma FilterBase_Generated {X : UU} (base : BaseOfFilter X) Hbase : FilterBase base = FilterGenerated base Hbase. Proof. simple refine (subtypePath_prop (B := Ξ» _, make_hProp _ _) _). - apply isapropdirprod. + apply isapropdirprod. * apply isaprop_isfilter_imply. * apply isaprop_isfilter_finite_intersection. + apply isaprop_isfilter_notempty. - simpl. apply filterbase_genetated. + intros A B. apply (BaseOfFilter_and base). + apply (BaseOfFilter_notempty base). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterBase_Generated
38,517
Lemma FilterBase_Generated_hypothesis {X : UU} (base : BaseOfFilter X) : ∏ L' : Sequence (X β†’ hProp), (∏ m : stn (length L'), base (L' m)) β†’ βˆƒ x : X, finite_intersection L' x. Proof. apply filterbase_generated_hypothesis. - intros A B. apply (BaseOfFilter_and base). - apply (BaseOfFilter_notempty base). - intros A Ha. now apply (BaseOfFilter_notfalse base). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterBase_Generated_hypothesis
38,518
Lemma filterbase_le {X : UU} (base base' : (X β†’ hProp) β†’ hProp) : (∏ P : X β†’ hProp, base P β†’ βˆƒ Q : X β†’ hProp, base' Q Γ— (∏ x, Q x β†’ P x)) <-> (∏ P : X β†’ hProp, filterbase base P β†’ filterbase base' P). Proof. split. - intros Hbase P. apply hinhuniv. intros A. generalize (Hbase _ (pr1 (pr2 A))). apply hinhfun. intros B. exists (pr1 B). split. + apply (pr1 (pr2 B)). + intros x Bx. apply (pr2 (pr2 A)), (pr2 (pr2 B)), Bx. - intros Hbase P Hp. apply Hbase. apply hinhpr. now exists P. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
filterbase_le
38,519
Lemma PreFilterBase_le {X : UU} (base base' : BaseOfPreFilter X) : (∏ P : X β†’ hProp, base P β†’ βˆƒ Q : X β†’ hProp, base' Q Γ— (∏ x, Q x β†’ P x)) <-> filter_le (PreFilterBase base') (PreFilterBase base). Proof. split. - intros Hbase P. apply (pr1 (filterbase_le base base')), Hbase. - apply (pr2 (filterbase_le base base')). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilterBase_le
38,520
Lemma FilterBase_le {X : UU} (base base' : BaseOfFilter X) : (∏ P : X β†’ hProp, base P β†’ βˆƒ Q : X β†’ hProp, base' Q Γ— (∏ x, Q x β†’ P x)) <-> filter_le (FilterBase base') (FilterBase base). Proof. split. - intros Hbase P. apply (pr1 (filterbase_le base base')), Hbase. - apply (pr2 (filterbase_le base base')). Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
FilterBase_le
38,521
Lemma hinhuniv2' {P X Y : UU} : isaprop P β†’ (X β†’ Y β†’ P) β†’ (βˆ₯ X βˆ₯ β†’ βˆ₯ Y βˆ₯ β†’ P). Proof. intros HP Hxy. apply (hinhuniv2 (P := make_hProp _ HP)). exact Hxy. Qed.
Lemma
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
hinhuniv2'
38,522
Lemma max_le_l : ∏ n m : nat, (n ≀ max n m)%nat. Proof. induction n as [ | n IHn] ; simpl max. - intros m ; reflexivity. - induction m as [ | m _]. + now apply isreflnatleh. + now apply IHn. Qed.
Lemma
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
max_le_l
38,523
Lemma max_le_r : ∏ n m : nat, (m ≀ max n m)%nat. Proof. induction n as [ | n IHn] ; simpl max. - intros m ; now apply isreflnatleh. - induction m as [ | m _]. + reflexivity. + now apply IHn. Qed.
Lemma
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
max_le_r
38,524
Definition singletonSequence {X} (A : X) : Sequence X := (1 ,, Ξ» _, A).
Definition
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
singletonSequence
38,525
Definition pairSequence {X} (A B : X) : Sequence X. Proof. exists 2. intros m. induction m as [m _]. induction m as [ | _ _]. - exact A. - exact B. Defined.
Definition
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
pairSequence
38,526
Definition union {X : UU} (P : (X β†’ hProp) β†’ hProp) : X β†’ hProp := Ξ» x : X, βˆƒ A : X β†’ hProp, P A Γ— A x.
Definition
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
union
38,527
Lemma union_hfalse {X : UU} : union (Ξ» _ : X β†’ hProp, hfalse) = (Ξ» _ : X, hfalse). Proof. apply funextfun ; intros x. apply hPropUnivalence. - apply hinhuniv. intros A. apply (pr1 (pr2 A)). - apply fromempty. Qed.
Lemma
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
union_hfalse
38,528
Lemma union_or {X : UU} : ∏ A B : X β†’ hProp, union (Ξ» C : X β†’ hProp, C = A ∨ C = B) = (Ξ» x : X, A x ∨ B x). Proof. intros A B. apply funextfun ; intro x. apply hPropUnivalence. - apply hinhuniv. intros C. generalize (pr1 (pr2 C)). apply hinhfun. apply sumofmaps. + intro e. rewrite <- e. left. apply (pr2 (pr2 C)). + intro e. rewrite <- e. right. apply (pr2 (pr2 C)). - apply hinhfun ; apply sumofmaps ; [ intros Ax | intros Bx]. + exists A. split. * apply hinhpr. now left. * exact Ax. + exists B. split. * apply hinhpr. now right. * exact Bx. Qed.
Lemma
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
union_or
38,529
Lemma union_hProp {X : UU} : ∏ (P : (X β†’ hProp) β†’ hProp), (∏ (L : (X β†’ hProp) β†’ hProp), (∏ A, L A β†’ P A) β†’ P (union L)) β†’ (∏ A B, P A β†’ P B β†’ P (Ξ» x : X, A x ∨ B x)). Proof. intros P Hp A B Pa Pb. rewrite <- union_or. apply Hp. intros C. apply hinhuniv. now apply sumofmaps ; intros ->. Qed.
Lemma
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
union_hProp
38,530
Lemma union_not_contained_in {X : UU} (U : (X -> hProp) -> hProp) (S : X -> hProp) : union U ⊈ S ⇔ (βˆƒ T, U T ∧ T ⊈ S). Proof. unfold subtype_notContainedIn, union. use make_dirprod; intro H. - use (hinhuniv _ H); intro Hx. induction Hx as [x Hx]. induction Hx as [Hx HSx]. use (hinhfun _ Hx); intro HT. induction HT as [T HT]. exists T. use make_dirprod. + exact (dirprod_pr1 HT). + apply hinhpr. exists x. exact (make_dirprod (dirprod_pr2 HT) HSx). - use (hinhuniv _ H); intro HT. induction HT as [T HT]. use (hinhfun _ (dirprod_pr2 HT)); intro Hx. induction Hx as [x Hx]. exists x. use make_dirprod. + apply hinhpr. exists T. exact (make_dirprod (dirprod_pr1 HT) (dirprod_pr1 Hx)). + exact (dirprod_pr2 Hx). Defined.
Lemma
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
union_not_contained_in
38,531
Definition finite_intersection {X : UU} (P : Sequence (X β†’ hProp)) : X β†’ hProp. Proof. intros x. simple refine (make_hProp _ _). - apply (∏ n, P n x). - apply (impred_isaprop _ (Ξ» _, propproperty _)). Defined.
Definition
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
finite_intersection
38,532
Lemma finite_intersection_htrue {X : UU} : finite_intersection nil = (Ξ» _ : X, htrue). Proof. apply funextfun ; intros x. apply hPropUnivalence. - intros _. apply tt. - intros _ m. generalize (pr1 m) (pr2 m). intros m' Hm. apply fromempty. revert Hm. apply negnatlthn0. Qed.
Lemma
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
finite_intersection_htrue
38,533
Lemma finite_intersection_1 {X : UU} : ∏ (A : X β†’ hProp), finite_intersection (singletonSequence A) = A. Proof. intros A. apply funextfun ; intros x. apply hPropUnivalence. - intros H. simple refine (H _). now exists 0. - intros Lx m. exact Lx. Qed.
Lemma
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
finite_intersection_1
38,534
Lemma finite_intersection_and {X : UU} : ∏ A B : X β†’ hProp, finite_intersection (pairSequence A B) = (Ξ» x : X, A x ∧ B x). Proof. intros A B. apply funextfun ; intro x. apply hPropUnivalence. - intros H. split. + simple refine (H (0,,_)). reflexivity. + simple refine (H (1,,_)). reflexivity. - intros H m ; simpl. change m with (pr1 m,,pr2 m). generalize (pr1 m) (pr2 m). clear m. intros m Hm. induction m as [ | m _]. + apply (pr1 H). + apply (pr2 H). Qed.
Lemma
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
finite_intersection_and
38,535
Lemma finite_intersection_case {X : UU} : ∏ (L : Sequence (X β†’ hProp)), finite_intersection L = sumofmaps (Ξ» _ _, htrue) (Ξ» (AB : (X β†’ hProp) Γ— Sequence (X β†’ hProp)) (x : X), pr1 AB x ∧ finite_intersection (pr2 AB) x) (disassembleSequence L). Proof. intros L. apply funextfun ; intros x. apply hPropUnivalence. - intros Hx. induction L as [n L]. induction n as [ | n _] ; simpl. + apply tt. + split. * simple refine (Hx _). * intros m. simple refine (Hx _). - induction L as [n L]. induction n as [ | n _] ; simpl. + intros _ n. apply fromempty. induction (negnatlthn0 _ (pr2 n)). + intros Hx m. change m with (pr1 m,,pr2 m). generalize (pr1 m) (pr2 m) ; clear m ; intros m Hm. induction (natlehchoice _ _ (natlthsntoleh _ _ Hm)) as [Hm' | ->]. * generalize (pr2 Hx (m,,Hm')). unfold dni_lastelement ; simpl. assert (H : Hm = natlthtolths m n Hm' ). { apply (pr2 (natlth m (S n))). } now rewrite H. * assert (H : lastelement = (n,, Hm)). { now apply subtypePath_prop. } rewrite <- H. exact (pr1 Hx). Qed.
Lemma
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
finite_intersection_case
38,536
Lemma finite_intersection_append {X : UU} : ∏ (A : X β†’ hProp) (L : Sequence (X β†’ hProp)), finite_intersection (append L A) = (Ξ» x : X, A x ∧ finite_intersection L x). Proof. intros A L. rewrite finite_intersection_case. simpl. rewrite append_vec_compute_2. apply funextfun ; intro x. apply maponpaths. apply map_on_two_paths. - induction L as [n L] ; simpl. apply maponpaths. apply funextfun ; intro m. simpl. rewrite <- replace_dni_last. apply append_vec_compute_1. - reflexivity. Qed.
Lemma
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
finite_intersection_append
38,537
Lemma finite_intersection_hProp {X : UU} : ∏ (P : (X β†’ hProp) β†’ hProp), (∏ (L : Sequence (X β†’ hProp)), (∏ n, P (L n)) β†’ P (finite_intersection L)) <-> (P (Ξ» _, htrue) Γ— (∏ A B, P A β†’ P B β†’ P (Ξ» x : X, A x ∧ B x))). Proof. intros P. split. - split. + rewrite <- finite_intersection_htrue. apply X0. intros n. induction (negnatlthn0 _ (pr2 n)). + intros A B Pa Pb. rewrite <- finite_intersection_and. apply X0. intros n. change n with (pr1 n,,pr2 n). generalize (pr1 n) (pr2 n) ; clear n ; intros n Hn. now induction n as [ | n _] ; simpl. - intros Hp. apply (Sequence_rect (P := Ξ» L : Sequence (X β†’ hProp), (∏ n : stn (length L), P (L n)) β†’ P (finite_intersection L))). + intros _. rewrite finite_intersection_htrue. exact (pr1 Hp). + intros L A IHl Hl. rewrite finite_intersection_append. apply (pr2 Hp). * rewrite <- (append_vec_compute_2 L A). now apply Hl. * apply IHl. intros n. rewrite <- (append_vec_compute_1 L A). apply Hl. Qed.
Lemma
Topology
Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes.
Topology\Prelim.v
finite_intersection_hProp
38,538
Definition isSetOfOpen_union := ∏ P : (X β†’ hProp) β†’ hProp, (∏ A : X β†’ hProp, P A β†’ O A) β†’ O (union P).
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isSetOfOpen_union
38,539
Lemma isaprop_isSetOfOpen_union : isaprop isSetOfOpen_union. Proof. apply (impred_isaprop _ (Ξ» _, isapropimpl _ _ (propproperty _))). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isaprop_isSetOfOpen_union
38,540
Definition isSetOfOpen_finite_intersection := ∏ (P : Sequence (X β†’ hProp)), (∏ m, O (P m)) β†’ O (finite_intersection P).
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isSetOfOpen_finite_intersection
38,541
Lemma isaprop_isSetOfOpen_finite_intersection : isaprop isSetOfOpen_finite_intersection. Proof. apply (impred_isaprop _ (Ξ» _, isapropimpl _ _ (propproperty _))). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isaprop_isSetOfOpen_finite_intersection
38,542
Definition isSetOfOpen_htrue := O (Ξ» _, htrue).
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isSetOfOpen_htrue
38,543
Definition isSetOfOpen_and := ∏ A B, O A β†’ O B β†’ O (Ξ» x, A x ∧ B x).
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isSetOfOpen_and
38,544
Lemma isaprop_isSetOfOpen_and : isaprop isSetOfOpen_and. Proof. apply impred_isaprop ; intros A. apply impred_isaprop ; intros B. apply isapropimpl, isapropimpl. now apply propproperty. Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isaprop_isSetOfOpen_and
38,545
Lemma isSetOfOpen_hfalse : isSetOfOpen_union β†’ O (Ξ» _ : X, hfalse). Proof. intros H0. rewrite <- union_hfalse. apply H0. intro. apply fromempty. Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isSetOfOpen_hfalse
38,546
Lemma isSetOfOpen_finite_intersection_htrue : isSetOfOpen_finite_intersection β†’ isSetOfOpen_htrue. Proof. intro H0. unfold isSetOfOpen_htrue. rewrite <- finite_intersection_htrue. apply H0. intros m. induction (nopathsfalsetotrue (pr2 m)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isSetOfOpen_finite_intersection_htrue
38,547
Lemma isSetOfOpen_finite_intersection_and : isSetOfOpen_finite_intersection β†’ isSetOfOpen_and. Proof. intros H0 A B Ha Hb. rewrite <- finite_intersection_and. apply H0. intros m ; simpl. induction m as [m Hm]. now induction m. Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isSetOfOpen_finite_intersection_and
38,548
Lemma isSetOfOpen_finite_intersection_carac : isSetOfOpen_htrue β†’ isSetOfOpen_and β†’ isSetOfOpen_finite_intersection. Proof. intros Htrue Hpair L. apply (pr2 (finite_intersection_hProp O)). split. - exact Htrue. - exact Hpair. Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isSetOfOpen_finite_intersection_carac
38,549
Definition isSetOfOpen := isSetOfOpen_union Γ— isSetOfOpen_finite_intersection.
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isSetOfOpen
38,550
Definition isTopologicalSpace (X : hSet) := βˆ‘ O : (X β†’ hProp) β†’ hProp, isSetOfOpen O.
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isTopologicalSpace
38,551
Definition TopologicalSpace := βˆ‘ X : hSet, isTopologicalSpace X.
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
TopologicalSpace
38,552
Definition make_TopologicalSpace (X : hSet) (O : (X β†’ hProp) β†’ hProp) (is : isSetOfOpen_union O) (is0 : isSetOfOpen_htrue O) (is1 : isSetOfOpen_and O) : TopologicalSpace := (X,,O,,is,,(isSetOfOpen_finite_intersection_carac _ is0 is1)).
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
make_TopologicalSpace
38,553
Definition pr1TopologicatSpace : TopologicalSpace β†’ hSet := pr1.
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
pr1TopologicatSpace
38,554
Definition isOpen {T : TopologicalSpace} : (T β†’ hProp) β†’ hProp := pr1 (pr2 T).
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isOpen
38,555
Definition Open {T : TopologicalSpace} := βˆ‘ O : T β†’ hProp, isOpen O.
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
Open
38,556
Definition pr1Open {T : TopologicalSpace} : Open β†’ (T β†’ hProp) := pr1.
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
pr1Open
38,557
Lemma isOpen_union : ∏ P : (T β†’ hProp) β†’ hProp, (∏ A : T β†’ hProp, P A β†’ isOpen A) β†’ isOpen (union P). Proof. apply (pr1 (pr2 (pr2 T))). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isOpen_union
38,558
Lemma isOpen_finite_intersection : ∏ (P : Sequence (T β†’ hProp)), (∏ m , isOpen (P m)) β†’ isOpen (finite_intersection P). Proof. apply (pr2 (pr2 (pr2 T))). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isOpen_finite_intersection
38,559
Lemma isOpen_hfalse : isOpen (Ξ» _ : T, hfalse). Proof. apply isSetOfOpen_hfalse. intros P H. now apply isOpen_union. Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isOpen_hfalse
38,560
Lemma isOpen_htrue : isOpen (Ξ» _ : T, htrue). Proof. rewrite <- finite_intersection_htrue. apply isOpen_finite_intersection. intros m. induction (nopathsfalsetotrue (pr2 m)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isOpen_htrue
38,561
Lemma isOpen_and : ∏ A B : T β†’ hProp, isOpen A β†’ isOpen B β†’ isOpen (Ξ» x : T, A x ∧ B x). Proof. apply isSetOfOpen_finite_intersection_and. intros P Hp. apply isOpen_finite_intersection. apply Hp. Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isOpen_and
38,562
Lemma isOpen_or : ∏ A B : T β†’ hProp, isOpen A β†’ isOpen B β†’ isOpen (Ξ» x : T, A x ∨ B x). Proof. intros A B Ha Hb. rewrite <- union_or. apply isOpen_union. intros C. apply hinhuniv. apply sumofmaps ; intros ->. - exact Ha. - exact Hb. Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isOpen_or
38,563
Definition neighborhood (x : T) : (T β†’ hProp) β†’ hProp := Ξ» P : T β†’ hProp, βˆƒ O : Open, O x Γ— (∏ y : T, O y β†’ P y).
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
neighborhood
38,564
Lemma neighborhood_isOpen (P : T β†’ hProp) : (∏ x, P x β†’ neighborhood x P) <-> isOpen P. Proof. split. - intros Hp. assert (H : ∏ A : T β†’ hProp, isaprop (∏ y : T, A y β†’ P y)). { intros A. apply impred_isaprop. intro y. apply isapropimpl. apply propproperty. } set (Q := Ξ» A : T β†’ hProp, isOpen A ∧ (make_hProp (∏ y : T, A y β†’ P y) (H A))). assert (X : P = (union Q)). { apply funextfun. intros x. apply hPropUnivalence. - intros Px. generalize (Hp _ Px). apply hinhfun. intros A. exists (pr1 A) ; split. + split. * apply (pr2 (pr1 A)). * exact (pr2 (pr2 A)). + exact (pr1 (pr2 A)). - apply hinhuniv. intros A. apply (pr2 (pr1 (pr2 A))). exact (pr2 (pr2 A)). } rewrite X. apply isOpen_union. intros A Ha. apply (pr1 Ha). - intros Hp x Px. apply hinhpr. exists (P,,Hp). split. + exact Px. + intros y Py. exact Py. Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
neighborhood_isOpen
38,565
Lemma neighborhood_imply : ∏ (x : T) (P Q : T β†’ hProp), (∏ y : T, P y β†’ Q y) β†’ neighborhood x P β†’ neighborhood x Q. Proof. intros x P Q H. apply hinhfun. intros O. exists (pr1 O). split. - apply (pr1 (pr2 O)). - intros y Hy. apply H. apply (pr2 (pr2 O)). exact Hy. Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
neighborhood_imply
38,566
Lemma neighborhood_forall : ∏ (x : T) (P : T β†’ hProp), (∏ y, P y) β†’ neighborhood x P. Proof. intros x P H. apply hinhpr. exists ((Ξ» _ : T, htrue),,isOpen_htrue). split. - reflexivity. - intros y _. now apply H. Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
neighborhood_forall
38,567
Lemma neighborhood_and : ∏ (x : T) (A B : T β†’ hProp), neighborhood x A β†’ neighborhood x B β†’ neighborhood x (Ξ» y, A y ∧ B y). Proof. intros x A B. apply hinhfun2. intros Oa Ob. exists ((Ξ» x, pr1 Oa x ∧ pr1 Ob x) ,, isOpen_and _ _ (pr2 (pr1 Oa)) (pr2 (pr1 Ob))). simpl. split. - split. + apply (pr1 (pr2 Oa)). + apply (pr1 (pr2 Ob)). - intros y Hy. split. + apply (pr2 (pr2 Oa)). apply (pr1 Hy). + apply (pr2 (pr2 Ob)). apply (pr2 Hy). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
neighborhood_and
38,568
Lemma neighborhood_point : ∏ (x : T) (P : T β†’ hProp), neighborhood x P β†’ P x. Proof. intros x P. apply hinhuniv. intros O. apply (pr2 (pr2 O)). apply (pr1 (pr2 O)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
neighborhood_point
38,569
Lemma neighborhood_neighborhood : ∏ (x : T) (P : T β†’ hProp), neighborhood x P β†’ βˆƒ Q : T β†’ hProp, neighborhood x Q Γ— ∏ y : T, Q y β†’ neighborhood y P. Proof. intros x P. apply hinhfun. intros Q. exists (pr1 Q). split. - apply (pr2 (neighborhood_isOpen _)). + apply (pr2 (pr1 Q)). + apply (pr1 (pr2 Q)). - intros y Qy. apply hinhpr. exists (pr1 Q). split. + exact Qy. + exact (pr2 (pr2 Q)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
neighborhood_neighborhood
38,570
Definition locally {T : TopologicalSpace} (x : T) : Filter T. Proof. simple refine (make_Filter _ _ _ _ _). - apply (neighborhood x). - abstract (intros A B ; apply neighborhood_imply). - abstract (apply (pr2 (neighborhood_isOpen _)) ; [ apply isOpen_htrue | apply tt]). - abstract (intros A B ; apply neighborhood_and). - abstract (intros A Ha ; apply hinhpr ; exists x ; now apply neighborhood_point in Ha). Defined.
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
locally
38,571
Definition is_base_of_neighborhood {T : TopologicalSpace} (x : T) (B : (T β†’ hProp) β†’ hProp) := (∏ P : T β†’ hProp, B P β†’ neighborhood x P) Γ— (∏ P : T β†’ hProp, neighborhood x P β†’ βˆƒ Q : T β†’ hProp, B Q Γ— (∏ t : T, Q t β†’ P t)).
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
is_base_of_neighborhood
38,572
Definition base_of_neighborhood {T : TopologicalSpace} (x : T) := βˆ‘ (B : (T β†’ hProp) β†’ hProp), is_base_of_neighborhood x B.
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
base_of_neighborhood
38,573
Definition pr1base_of_neighborhood {T : TopologicalSpace} (x : T) : base_of_neighborhood x β†’ ((T β†’ hProp) β†’ hProp) := pr1.
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
pr1base_of_neighborhood
38,574
Definition base_default : (T β†’ hProp) β†’ hProp := Ξ» P : T β†’ hProp, isOpen P ∧ P x.
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
base_default
38,575
Lemma base_default_1 : ∏ P : T β†’ hProp, base_default P β†’ neighborhood x P. Proof. intros P Hp. apply hinhpr. exists (P,,(pr1 Hp)) ; split. - exact (pr2 Hp). - intros. assumption. Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
base_default_1
38,576
Lemma base_default_2 : ∏ P : T β†’ hProp, neighborhood x P β†’ βˆƒ Q : T β†’ hProp, base_default Q Γ— (∏ t : T, Q t β†’ P t). Proof. intros P. apply hinhfun. intros Q. exists (pr1 Q). repeat split. - exact (pr2 (pr1 Q)). - exact (pr1 (pr2 Q)). - exact (pr2 (pr2 Q)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
base_default_2
38,577
Definition base_of_neighborhood_default {T : TopologicalSpace} (x : T) : base_of_neighborhood x. Proof. exists (base_default x). split. - now apply base_default_1. - now apply base_default_2. Defined.
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
base_of_neighborhood_default
38,578
Definition neighborhood' {T : TopologicalSpace} (x : T) (B : base_of_neighborhood x) : (T β†’ hProp) β†’ hProp := Ξ» P : T β†’ hProp, βˆƒ O : T β†’ hProp, B O Γ— (∏ t : T, O t β†’ P t).
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
neighborhood'
38,579
Lemma neighborhood_equiv {T : TopologicalSpace} (x : T) (B : base_of_neighborhood x) : ∏ P, neighborhood' x B P <-> neighborhood x P. Proof. split. - apply hinhuniv. intros O. generalize ((pr1 (pr2 B)) (pr1 O) (pr1 (pr2 O))). apply neighborhood_imply. exact (pr2 (pr2 O)). - intros Hp. generalize (pr2 (pr2 B) P Hp). apply hinhfun. intros O. exists (pr1 O). exact (pr2 O). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
neighborhood_equiv
38,580
Definition isNeighborhood {X : UU} (B : X β†’ (X β†’ hProp) β†’ hProp) := (∏ x, isfilter_imply (B x)) Γ— (∏ x, isfilter_htrue (B x)) Γ— (∏ x, isfilter_and (B x)) Γ— (∏ x P, B x P β†’ P x) Γ— (∏ x P, B x P β†’ βˆƒ Q, B x Q Γ— ∏ y, Q y β†’ B y P).
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isNeighborhood
38,581
Lemma isNeighborhood_neighborhood {T : TopologicalSpace} : isNeighborhood (neighborhood (T := T)). Proof. repeat split. - intros x A B. apply (neighborhood_imply x). - intros x. apply (pr2 (neighborhood_isOpen _)). + exact (isOpen_htrue (T := T)). + apply tt. - intros A B. apply neighborhood_and. - intros x P. apply neighborhood_point. - intros x P. apply neighborhood_neighborhood. Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isNeighborhood_neighborhood
38,582
Definition topologyfromneighborhood (A : X β†’ hProp) := ∏ x : X, A x β†’ N x A.
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
topologyfromneighborhood
38,583
Lemma isaprop_topologyfromneighborhood : ∏ A, isaprop (topologyfromneighborhood A). Proof. intros A. apply impred_isaprop ; intros x ; apply isapropimpl, propproperty. Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isaprop_topologyfromneighborhood
38,584
Lemma topologyfromneighborhood_open : isSetOfOpen_union (Ξ» A : X β†’ hProp, make_hProp (topologyfromneighborhood A) (isaprop_topologyfromneighborhood A)). Proof. intros L Hl x. apply hinhuniv. intros A. apply Himpl with (pr1 A). - intros y Hy. apply hinhpr. now exists (pr1 A), (pr1 (pr2 A)). - apply Hl. + exact (pr1 (pr2 A)). + exact (pr2 (pr2 A)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
topologyfromneighborhood_open
38,585
Definition TopologyFromNeighborhood {X : hSet} (N : X β†’ (X β†’ hProp) β†’ hProp) (H : isNeighborhood N) : TopologicalSpace. Proof. use make_TopologicalSpace. - apply X. - intros A. simple refine (make_hProp _ _). + apply (topologyfromneighborhood N A). + apply isaprop_topologyfromneighborhood. - apply topologyfromneighborhood_open. apply (pr1 H). - intros x _. apply (pr1 (pr2 H)). - intros A B Ha Hb x Hx. apply (pr1 (pr2 (pr2 H))). + now apply Ha, (pr1 Hx). + now apply Hb, (pr2 Hx). Defined.
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
TopologyFromNeighborhood
38,586
Lemma TopologyFromNeighborhood_correct {X : hSet} (N : X β†’ (X β†’ hProp) β†’ hProp) (H : isNeighborhood N) : ∏ (x : X) (P : X β†’ hProp), N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. Proof. split. - intros Hx. apply hinhpr. simple refine (tpair _ _ _). + simple refine (tpair _ _ _). * intros y. apply (N y P). * simpl ; intros y Hy. generalize (pr2 (pr2 (pr2 (pr2 H))) _ _ Hy). apply hinhuniv. intros Q. apply (pr1 H) with (2 := pr1 (pr2 Q)). exact (pr2 (pr2 Q)). + split ; simpl. * exact Hx. * intros y. now apply (pr1 (pr2 (pr2 (pr2 H)))). - apply hinhuniv. intros O. apply (pr1 H) with (pr1 (pr1 O)). + apply (pr2 (pr2 O)). + simple refine (pr2 (pr1 O) _ _). exact (pr1 (pr2 O)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
TopologyFromNeighborhood_correct
38,587
Lemma isNeighborhood_isPreFilter {X : hSet} N : isNeighborhood N -> ∏ x : X, isPreFilter (N x). Proof. intros Hn x. split. - apply (pr1 Hn). - apply isfilter_finite_intersection_carac. + apply (pr1 (pr2 Hn)). + apply (pr1 (pr2 (pr2 Hn))). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isNeighborhood_isPreFilter
38,588
Lemma isNeighborhood_isFilter {X : hSet} N : isNeighborhood N -> ∏ x : X, isFilter (N x). Proof. intros Hn x. split. - apply isNeighborhood_isPreFilter, Hn. - intros A Fa. apply hinhpr. exists x. apply ((pr1 (pr2 (pr2 (pr2 Hn)))) _ _ Fa). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
isNeighborhood_isFilter
38,589
Definition topologygenerated := Ξ» (x : X) (A : X β†’ hProp), (βˆƒ L : Sequence (X β†’ hProp), (∏ n, O (L n)) Γ— (finite_intersection L x) Γ— (∏ y, finite_intersection L y β†’ A y)).
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
topologygenerated
38,590
Lemma topologygenerated_imply : ∏ x : X, isfilter_imply (topologygenerated x). Proof. intros x A B H. apply hinhfun. intros L. exists (pr1 L). repeat split. - exact (pr1 (pr2 L)). - exact (pr1 (pr2 (pr2 L))). - intros y Hy. apply H, (pr2 (pr2 (pr2 L))), Hy. Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
topologygenerated_imply
38,591
Lemma topologygenerated_htrue : ∏ x : X, isfilter_htrue (topologygenerated x). Proof. intros x. apply hinhpr. exists nil. repeat split; intros n; induction (nopathsfalsetotrue (pr2 n)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
topologygenerated_htrue
38,592
Lemma topologygenerated_and : ∏ x : X, isfilter_and (topologygenerated x). Proof. intros x A B. apply hinhfun2. intros La Lb. exists (concatenate (pr1 La) (pr1 Lb)). repeat split. - simpl ; intro. apply (coprod_rect (Ξ» x, O (coprod_rect _ _ _ x))) ; intros m. + rewrite coprod_rect_compute_1. exact (pr1 (pr2 La) _). + rewrite coprod_rect_compute_2. exact (pr1 (pr2 Lb) _). - simpl ; intro. apply (coprod_rect (Ξ» y, (coprod_rect (Ξ» _ : stn (length (pr1 La)) β¨Ώ stn (length (pr1 Lb)), X β†’ hProp) (Ξ» j : stn (length (pr1 La)), (pr1 La) j) (Ξ» k : stn (length (pr1 Lb)), (pr1 Lb) k) y) x)) ; intros m. + rewrite coprod_rect_compute_1. exact (pr1 (pr2 (pr2 La)) _). + rewrite coprod_rect_compute_2. exact (pr1 (pr2 (pr2 Lb)) _). - apply (pr2 (pr2 (pr2 La))). intros n. simpl in X0. unfold concatenate' in X0. specialize (X0 (weqfromcoprodofstn_map (length (pr1 La)) (length (pr1 Lb)) (ii1 n))). now rewrite (weqfromcoprodofstn_eq1 _ _) , coprod_rect_compute_1 in X0. - apply (pr2 (pr2 (pr2 Lb))). intros n. simpl in X0. unfold concatenate' in X0. specialize (X0 (weqfromcoprodofstn_map (length (pr1 La)) (length (pr1 Lb)) (ii2 n))). now rewrite (weqfromcoprodofstn_eq1 _ _), coprod_rect_compute_2 in X0. Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
topologygenerated_and
38,593
Lemma topologygenerated_point : ∏ (x : X) (P : X β†’ hProp), topologygenerated x P β†’ P x. Proof. intros x P. apply hinhuniv. intros L. apply (pr2 (pr2 (pr2 L))). exact (pr1 (pr2 (pr2 L))). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
topologygenerated_point
38,594
Lemma topologygenerated_neighborhood : ∏ (x : X) (P : X β†’ hProp), topologygenerated x P β†’ βˆƒ Q : X β†’ hProp, topologygenerated x Q Γ— (∏ y : X, Q y β†’ topologygenerated y P). Proof. intros x P. apply hinhfun. intros L. exists (finite_intersection (pr1 L)). split. - apply hinhpr. exists (pr1 L). repeat split. + exact (pr1 (pr2 L)). + exact (pr1 (pr2 (pr2 L))). + intros. assumption. - intros y Hy. apply hinhpr. exists (pr1 L). repeat split. + exact (pr1 (pr2 L)). + exact Hy. + exact (pr2 (pr2 (pr2 L))). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
topologygenerated_neighborhood
38,595
Definition TopologyGenerated {X : hSet} (O : (X β†’ hProp) β†’ hProp) : TopologicalSpace. Proof. simple refine (TopologyFromNeighborhood _ _). - apply X. - apply topologygenerated, O. - repeat split. + apply topologygenerated_imply. + apply topologygenerated_htrue. + apply topologygenerated_and. + apply topologygenerated_point. + apply topologygenerated_neighborhood. Defined.
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
TopologyGenerated
38,596
Lemma TopologyGenerated_included {X : hSet} : ∏ (O : (X β†’ hProp) β†’ hProp) (P : X β†’ hProp), O P β†’ isOpen (T := TopologyGenerated O) P. Proof. intros O P Op. apply neighborhood_isOpen. intros x Hx. apply TopologyFromNeighborhood_correct. apply hinhpr. exists (singletonSequence P). repeat split. - induction n as [n Hn]. exact Op. - intros n ; induction n as [n Hn]. exact Hx. - intros y Hy. now apply (Hy (0%nat,,paths_refl _)). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
TopologyGenerated_included
38,597
Lemma TopologyGenerated_smallest {X : hSet} : ∏ (O : (X β†’ hProp) β†’ hProp) (T : isTopologicalSpace X), (∏ P : X β†’ hProp, O P β†’ pr1 T P) β†’ ∏ P : X β†’ hProp, isOpen (T := TopologyGenerated O) P β†’ pr1 T P. Proof. intros O T Ht P Hp. apply (neighborhood_isOpen (T := (X,,T))). intros x Px. generalize (Hp x Px) ; clear Hp. apply hinhfun. intros L. simple refine (tpair _ _ _). - simple refine (tpair _ _ _). + apply (finite_intersection (pr1 L)). + apply (isOpen_finite_intersection (T := X,,T)). intros m. apply Ht. apply (pr1 (pr2 L)). - split. + exact (pr1 (pr2 (pr2 L))). + exact (pr2 (pr2 (pr2 L))). Qed.
Lemma
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
TopologyGenerated_smallest
38,598
Definition topologydirprod := Ξ» (z : U Γ— V) (A : U Γ— V β†’ hProp), (βˆƒ (Ax : U β†’ hProp) (Ay : V β†’ hProp), (Ax (pr1 z) Γ— isOpen Ax) Γ— (Ay (pr2 z) Γ— isOpen Ay) Γ— (∏ x y, Ax x β†’ Ay y β†’ A (x,,y))).
Definition
Topology
Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _).
Topology\Topology.v
topologydirprod
38,599