fact
stringlengths 13
15.5k
| type
stringclasses 9
values | library
stringclasses 15
values | imports
stringlengths 14
7.64k
β | filename
stringlengths 12
97
| symbolic_name
stringlengths 1
78
| index_level
int64 0
38.7k
|
---|---|---|---|---|---|---|
Definition pr1BaseOfFilter {X : UU} : BaseOfFilter X β BaseOfPreFilter X. Proof. intros base. exists (pr1 base). split. - apply (pr1 (pr2 base)). - apply (pr1 (pr2 (pr2 base))). Defined. | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | pr1BaseOfFilter | 38,500 |
Lemma BaseOfPreFilter_and {X : UU} (base : BaseOfPreFilter X) : β A B : X β hProp, base A β base B β β C : X β hProp, base C Γ (β x, C x β A x β§ B x). Proof. apply (pr1 (pr2 base)). Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | BaseOfPreFilter_and | 38,501 |
Lemma BaseOfPreFilter_notempty {X : UU} (base : BaseOfPreFilter X) : β A : X β hProp, base A. Proof. apply (pr2 (pr2 base)). Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | BaseOfPreFilter_notempty | 38,502 |
Lemma BaseOfFilter_and {X : UU} (base : BaseOfFilter X) : β A B : X β hProp, base A β base B β β C : X β hProp, base C Γ (β x, C x β A x β§ B x). Proof. apply (pr1 (pr2 base)). Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | BaseOfFilter_and | 38,503 |
Lemma BaseOfFilter_notempty {X : UU} (base : BaseOfFilter X) : β A : X β hProp, base A. Proof. apply (pr1 (pr2 (pr2 base))). Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | BaseOfFilter_notempty | 38,504 |
Lemma BaseOfFilter_notfalse {X : UU} (base : BaseOfFilter X) : β A, base A β β x, A x. Proof. apply (pr2 (pr2 (pr2 base))). Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | BaseOfFilter_notfalse | 38,505 |
Definition filterbase : (X β hProp) β hProp := Ξ» A : X β hProp, (β B : X β hProp, base B Γ β x, B x β A x). | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | filterbase | 38,506 |
Lemma filterbase_imply : isfilter_imply filterbase. Proof. intros A B H. apply hinhfun. intros A'. exists (pr1 A'). split. - apply (pr1 (pr2 A')). - intros x Hx. apply H. now apply (pr2 (pr2 A')). Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | filterbase_imply | 38,507 |
Lemma filterbase_htrue : isfilter_htrue filterbase. Proof. revert Hempty. apply hinhfun. intros A. exists (pr1 A). split. - apply (pr2 A). - intros. exact tt. Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | filterbase_htrue | 38,508 |
Lemma filterbase_and : isfilter_and filterbase. Proof. intros A B. apply hinhuniv2. intros A' B'. refine (hinhfun _ _). 2: apply Hand. 2: (apply (pr1 (pr2 A'))). 2: (apply (pr1 (pr2 B'))). intros C'. exists (pr1 C'). split. - apply (pr1 (pr2 C')). - intros x Cx ; split. + apply (pr2 (pr2 A')). now refine (pr1 (pr2 (pr2 C') _ _)). + apply (pr2 (pr2 B')). now refine (pr2 (pr2 (pr2 C') _ _)). Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | filterbase_and | 38,509 |
Lemma filterbase_notempty : isfilter_notempty filterbase. Proof. intros A. apply hinhuniv. intros B. generalize (Hfalse _ (pr1 (pr2 B))). apply hinhfun. intros x. exists (pr1 x). apply (pr2 (pr2 B)), (pr2 x). Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | filterbase_notempty | 38,510 |
Lemma base_finite_intersection : β L : Sequence (X β hProp), (β n, base (L n)) β β A, base A Γ (β x, A x β finite_intersection L x). Proof. intros L Hbase. apply (pr2 (finite_intersection_hProp (Ξ» B, β A : X β hProp, base A Γ (β x : X, A x β B x)))). - split. + revert Hempty. apply hinhfun. intros A. now exists (pr1 A), (pr2 A). + intros A B. apply hinhuniv2. intros A' B'. generalize (Hand _ _ (pr1 (pr2 A')) (pr1 (pr2 B'))). apply hinhfun. intros C. exists (pr1 C). split. * exact (pr1 (pr2 C)). * intros x Cx. split. ** apply (pr2 (pr2 A')), (pr1 (pr2 (pr2 C) _ Cx)). ** apply (pr2 (pr2 B')), (pr2 (pr2 (pr2 C) _ Cx)). - intros n. apply hinhpr. exists (L n). split. + now apply Hbase. + intros; assumption. Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | base_finite_intersection | 38,511 |
Lemma filterbase_genetated : filterbase = filtergenerated base. Proof. apply funextfun ; intros P. apply hPropUnivalence. - apply hinhfun. intros A. exists (singletonSequence (pr1 A)). split. + intros m ; simpl. exact (pr1 (pr2 A)). + intros x Ax. apply (pr2 (pr2 A)). simple refine (Ax _). now exists 0%nat. - apply hinhuniv. intros L. generalize (base_finite_intersection (pr1 L) (pr1 (pr2 L))). apply hinhfun. intros A. exists (pr1 A) ; split. + exact (pr1 (pr2 A)). + intros x Ax. now apply (pr2 (pr2 L)), (pr2 (pr2 A)). Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | filterbase_genetated | 38,512 |
Lemma filterbase_generated_hypothesis : β L' : Sequence (X β hProp), (β m : stn (length L'), base (L' m)) β β x : X, finite_intersection L' x. Proof. intros L Hbase. generalize (base_finite_intersection L Hbase). apply hinhuniv. intros A. generalize (Hfalse _ (pr1 (pr2 A))). apply hinhfun. intros x. exists (pr1 x). apply (pr2 (pr2 A)). exact (pr2 x). Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | filterbase_generated_hypothesis | 38,513 |
Definition PreFilterBase {X : UU} (base : BaseOfPreFilter X) : PreFilter X. Proof. simple refine (make_PreFilter _ _ _ _). - apply (filterbase base). - apply filterbase_imply. - apply filterbase_htrue, BaseOfPreFilter_notempty. - apply filterbase_and. intros A B. now apply BaseOfPreFilter_and. Defined. | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | PreFilterBase | 38,514 |
Definition FilterBase {X : UU} (base : BaseOfFilter X) : Filter X. Proof. intros. exists (pr1 (PreFilterBase base)). split. - simple refine (pr2 (PreFilterBase base)). - apply filterbase_notempty. intros A Ha. simple refine (BaseOfFilter_notfalse _ _ _). + apply base. + apply Ha. Defined. | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | FilterBase | 38,515 |
Lemma PreFilterBase_Generated {X : UU} (base : BaseOfPreFilter X) : PreFilterBase base = PreFilterGenerated base. Proof. simple refine (subtypePath_prop (B := Ξ» _, make_hProp _ _) _). - apply isapropdirprod. + apply isaprop_isfilter_imply. + apply isaprop_isfilter_finite_intersection. - simpl. apply filterbase_genetated. + intros A B. apply (BaseOfPreFilter_and base). + apply (BaseOfPreFilter_notempty base). Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | PreFilterBase_Generated | 38,516 |
Lemma FilterBase_Generated {X : UU} (base : BaseOfFilter X) Hbase : FilterBase base = FilterGenerated base Hbase. Proof. simple refine (subtypePath_prop (B := Ξ» _, make_hProp _ _) _). - apply isapropdirprod. + apply isapropdirprod. * apply isaprop_isfilter_imply. * apply isaprop_isfilter_finite_intersection. + apply isaprop_isfilter_notempty. - simpl. apply filterbase_genetated. + intros A B. apply (BaseOfFilter_and base). + apply (BaseOfFilter_notempty base). Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | FilterBase_Generated | 38,517 |
Lemma FilterBase_Generated_hypothesis {X : UU} (base : BaseOfFilter X) : β L' : Sequence (X β hProp), (β m : stn (length L'), base (L' m)) β β x : X, finite_intersection L' x. Proof. apply filterbase_generated_hypothesis. - intros A B. apply (BaseOfFilter_and base). - apply (BaseOfFilter_notempty base). - intros A Ha. now apply (BaseOfFilter_notfalse base). Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | FilterBase_Generated_hypothesis | 38,518 |
Lemma filterbase_le {X : UU} (base base' : (X β hProp) β hProp) : (β P : X β hProp, base P β β Q : X β hProp, base' Q Γ (β x, Q x β P x)) <-> (β P : X β hProp, filterbase base P β filterbase base' P). Proof. split. - intros Hbase P. apply hinhuniv. intros A. generalize (Hbase _ (pr1 (pr2 A))). apply hinhfun. intros B. exists (pr1 B). split. + apply (pr1 (pr2 B)). + intros x Bx. apply (pr2 (pr2 A)), (pr2 (pr2 B)), Bx. - intros Hbase P Hp. apply Hbase. apply hinhpr. now exists P. Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | filterbase_le | 38,519 |
Lemma PreFilterBase_le {X : UU} (base base' : BaseOfPreFilter X) : (β P : X β hProp, base P β β Q : X β hProp, base' Q Γ (β x, Q x β P x)) <-> filter_le (PreFilterBase base') (PreFilterBase base). Proof. split. - intros Hbase P. apply (pr1 (filterbase_le base base')), Hbase. - apply (pr2 (filterbase_le base base')). Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | PreFilterBase_le | 38,520 |
Lemma FilterBase_le {X : UU} (base base' : BaseOfFilter X) : (β P : X β hProp, base P β β Q : X β hProp, base' Q Γ (β x, Q x β P x)) <-> filter_le (FilterBase base') (FilterBase base). Proof. split. - intros Hbase P. apply (pr1 (filterbase_le base base')), Hbase. - apply (pr2 (filterbase_le base base')). Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | FilterBase_le | 38,521 |
Lemma hinhuniv2' {P X Y : UU} : isaprop P β (X β Y β P) β (β₯ X β₯ β β₯ Y β₯ β P). Proof. intros HP Hxy. apply (hinhuniv2 (P := make_hProp _ HP)). exact Hxy. Qed. | Lemma | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | hinhuniv2' | 38,522 |
Lemma max_le_l : β n m : nat, (n β€ max n m)%nat. Proof. induction n as [ | n IHn] ; simpl max. - intros m ; reflexivity. - induction m as [ | m _]. + now apply isreflnatleh. + now apply IHn. Qed. | Lemma | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | max_le_l | 38,523 |
Lemma max_le_r : β n m : nat, (m β€ max n m)%nat. Proof. induction n as [ | n IHn] ; simpl max. - intros m ; now apply isreflnatleh. - induction m as [ | m _]. + reflexivity. + now apply IHn. Qed. | Lemma | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | max_le_r | 38,524 |
Definition singletonSequence {X} (A : X) : Sequence X := (1 ,, Ξ» _, A). | Definition | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | singletonSequence | 38,525 |
Definition pairSequence {X} (A B : X) : Sequence X. Proof. exists 2. intros m. induction m as [m _]. induction m as [ | _ _]. - exact A. - exact B. Defined. | Definition | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | pairSequence | 38,526 |
Definition union {X : UU} (P : (X β hProp) β hProp) : X β hProp := Ξ» x : X, β A : X β hProp, P A Γ A x. | Definition | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | union | 38,527 |
Lemma union_hfalse {X : UU} : union (Ξ» _ : X β hProp, hfalse) = (Ξ» _ : X, hfalse). Proof. apply funextfun ; intros x. apply hPropUnivalence. - apply hinhuniv. intros A. apply (pr1 (pr2 A)). - apply fromempty. Qed. | Lemma | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | union_hfalse | 38,528 |
Lemma union_or {X : UU} : β A B : X β hProp, union (Ξ» C : X β hProp, C = A β¨ C = B) = (Ξ» x : X, A x β¨ B x). Proof. intros A B. apply funextfun ; intro x. apply hPropUnivalence. - apply hinhuniv. intros C. generalize (pr1 (pr2 C)). apply hinhfun. apply sumofmaps. + intro e. rewrite <- e. left. apply (pr2 (pr2 C)). + intro e. rewrite <- e. right. apply (pr2 (pr2 C)). - apply hinhfun ; apply sumofmaps ; [ intros Ax | intros Bx]. + exists A. split. * apply hinhpr. now left. * exact Ax. + exists B. split. * apply hinhpr. now right. * exact Bx. Qed. | Lemma | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | union_or | 38,529 |
Lemma union_hProp {X : UU} : β (P : (X β hProp) β hProp), (β (L : (X β hProp) β hProp), (β A, L A β P A) β P (union L)) β (β A B, P A β P B β P (Ξ» x : X, A x β¨ B x)). Proof. intros P Hp A B Pa Pb. rewrite <- union_or. apply Hp. intros C. apply hinhuniv. now apply sumofmaps ; intros ->. Qed. | Lemma | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | union_hProp | 38,530 |
Lemma union_not_contained_in {X : UU} (U : (X -> hProp) -> hProp) (S : X -> hProp) : union U β S β (β T, U T β§ T β S). Proof. unfold subtype_notContainedIn, union. use make_dirprod; intro H. - use (hinhuniv _ H); intro Hx. induction Hx as [x Hx]. induction Hx as [Hx HSx]. use (hinhfun _ Hx); intro HT. induction HT as [T HT]. exists T. use make_dirprod. + exact (dirprod_pr1 HT). + apply hinhpr. exists x. exact (make_dirprod (dirprod_pr2 HT) HSx). - use (hinhuniv _ H); intro HT. induction HT as [T HT]. use (hinhfun _ (dirprod_pr2 HT)); intro Hx. induction Hx as [x Hx]. exists x. use make_dirprod. + apply hinhpr. exists T. exact (make_dirprod (dirprod_pr1 HT) (dirprod_pr1 Hx)). + exact (dirprod_pr2 Hx). Defined. | Lemma | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | union_not_contained_in | 38,531 |
Definition finite_intersection {X : UU} (P : Sequence (X β hProp)) : X β hProp. Proof. intros x. simple refine (make_hProp _ _). - apply (β n, P n x). - apply (impred_isaprop _ (Ξ» _, propproperty _)). Defined. | Definition | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | finite_intersection | 38,532 |
Lemma finite_intersection_htrue {X : UU} : finite_intersection nil = (Ξ» _ : X, htrue). Proof. apply funextfun ; intros x. apply hPropUnivalence. - intros _. apply tt. - intros _ m. generalize (pr1 m) (pr2 m). intros m' Hm. apply fromempty. revert Hm. apply negnatlthn0. Qed. | Lemma | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | finite_intersection_htrue | 38,533 |
Lemma finite_intersection_1 {X : UU} : β (A : X β hProp), finite_intersection (singletonSequence A) = A. Proof. intros A. apply funextfun ; intros x. apply hPropUnivalence. - intros H. simple refine (H _). now exists 0. - intros Lx m. exact Lx. Qed. | Lemma | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | finite_intersection_1 | 38,534 |
Lemma finite_intersection_and {X : UU} : β A B : X β hProp, finite_intersection (pairSequence A B) = (Ξ» x : X, A x β§ B x). Proof. intros A B. apply funextfun ; intro x. apply hPropUnivalence. - intros H. split. + simple refine (H (0,,_)). reflexivity. + simple refine (H (1,,_)). reflexivity. - intros H m ; simpl. change m with (pr1 m,,pr2 m). generalize (pr1 m) (pr2 m). clear m. intros m Hm. induction m as [ | m _]. + apply (pr1 H). + apply (pr2 H). Qed. | Lemma | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | finite_intersection_and | 38,535 |
Lemma finite_intersection_case {X : UU} : β (L : Sequence (X β hProp)), finite_intersection L = sumofmaps (Ξ» _ _, htrue) (Ξ» (AB : (X β hProp) Γ Sequence (X β hProp)) (x : X), pr1 AB x β§ finite_intersection (pr2 AB) x) (disassembleSequence L). Proof. intros L. apply funextfun ; intros x. apply hPropUnivalence. - intros Hx. induction L as [n L]. induction n as [ | n _] ; simpl. + apply tt. + split. * simple refine (Hx _). * intros m. simple refine (Hx _). - induction L as [n L]. induction n as [ | n _] ; simpl. + intros _ n. apply fromempty. induction (negnatlthn0 _ (pr2 n)). + intros Hx m. change m with (pr1 m,,pr2 m). generalize (pr1 m) (pr2 m) ; clear m ; intros m Hm. induction (natlehchoice _ _ (natlthsntoleh _ _ Hm)) as [Hm' | ->]. * generalize (pr2 Hx (m,,Hm')). unfold dni_lastelement ; simpl. assert (H : Hm = natlthtolths m n Hm' ). { apply (pr2 (natlth m (S n))). } now rewrite H. * assert (H : lastelement = (n,, Hm)). { now apply subtypePath_prop. } rewrite <- H. exact (pr1 Hx). Qed. | Lemma | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | finite_intersection_case | 38,536 |
Lemma finite_intersection_append {X : UU} : β (A : X β hProp) (L : Sequence (X β hProp)), finite_intersection (append L A) = (Ξ» x : X, A x β§ finite_intersection L x). Proof. intros A L. rewrite finite_intersection_case. simpl. rewrite append_vec_compute_2. apply funextfun ; intro x. apply maponpaths. apply map_on_two_paths. - induction L as [n L] ; simpl. apply maponpaths. apply funextfun ; intro m. simpl. rewrite <- replace_dni_last. apply append_vec_compute_1. - reflexivity. Qed. | Lemma | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | finite_intersection_append | 38,537 |
Lemma finite_intersection_hProp {X : UU} : β (P : (X β hProp) β hProp), (β (L : Sequence (X β hProp)), (β n, P (L n)) β P (finite_intersection L)) <-> (P (Ξ» _, htrue) Γ (β A B, P A β P B β P (Ξ» x : X, A x β§ B x))). Proof. intros P. split. - split. + rewrite <- finite_intersection_htrue. apply X0. intros n. induction (negnatlthn0 _ (pr2 n)). + intros A B Pa Pb. rewrite <- finite_intersection_and. apply X0. intros n. change n with (pr1 n,,pr2 n). generalize (pr1 n) (pr2 n) ; clear n ; intros n Hn. now induction n as [ | n _] ; simpl. - intros Hp. apply (Sequence_rect (P := Ξ» L : Sequence (X β hProp), (β n : stn (length L), P (L n)) β P (finite_intersection L))). + intros _. rewrite finite_intersection_htrue. exact (pr1 Hp). + intros L A IHl Hl. rewrite finite_intersection_append. apply (pr2 Hp). * rewrite <- (append_vec_compute_2 L A). now apply Hl. * apply IHl. intros n. rewrite <- (append_vec_compute_1 L A). apply Hl. Qed. | Lemma | Topology | Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.Subtypes. | Topology\Prelim.v | finite_intersection_hProp | 38,538 |
Definition isSetOfOpen_union := β P : (X β hProp) β hProp, (β A : X β hProp, P A β O A) β O (union P). | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isSetOfOpen_union | 38,539 |
Lemma isaprop_isSetOfOpen_union : isaprop isSetOfOpen_union. Proof. apply (impred_isaprop _ (Ξ» _, isapropimpl _ _ (propproperty _))). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isaprop_isSetOfOpen_union | 38,540 |
Definition isSetOfOpen_finite_intersection := β (P : Sequence (X β hProp)), (β m, O (P m)) β O (finite_intersection P). | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isSetOfOpen_finite_intersection | 38,541 |
Lemma isaprop_isSetOfOpen_finite_intersection : isaprop isSetOfOpen_finite_intersection. Proof. apply (impred_isaprop _ (Ξ» _, isapropimpl _ _ (propproperty _))). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isaprop_isSetOfOpen_finite_intersection | 38,542 |
Definition isSetOfOpen_htrue := O (Ξ» _, htrue). | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isSetOfOpen_htrue | 38,543 |
Definition isSetOfOpen_and := β A B, O A β O B β O (Ξ» x, A x β§ B x). | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isSetOfOpen_and | 38,544 |
Lemma isaprop_isSetOfOpen_and : isaprop isSetOfOpen_and. Proof. apply impred_isaprop ; intros A. apply impred_isaprop ; intros B. apply isapropimpl, isapropimpl. now apply propproperty. Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isaprop_isSetOfOpen_and | 38,545 |
Lemma isSetOfOpen_hfalse : isSetOfOpen_union β O (Ξ» _ : X, hfalse). Proof. intros H0. rewrite <- union_hfalse. apply H0. intro. apply fromempty. Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isSetOfOpen_hfalse | 38,546 |
Lemma isSetOfOpen_finite_intersection_htrue : isSetOfOpen_finite_intersection β isSetOfOpen_htrue. Proof. intro H0. unfold isSetOfOpen_htrue. rewrite <- finite_intersection_htrue. apply H0. intros m. induction (nopathsfalsetotrue (pr2 m)). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isSetOfOpen_finite_intersection_htrue | 38,547 |
Lemma isSetOfOpen_finite_intersection_and : isSetOfOpen_finite_intersection β isSetOfOpen_and. Proof. intros H0 A B Ha Hb. rewrite <- finite_intersection_and. apply H0. intros m ; simpl. induction m as [m Hm]. now induction m. Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isSetOfOpen_finite_intersection_and | 38,548 |
Lemma isSetOfOpen_finite_intersection_carac : isSetOfOpen_htrue β isSetOfOpen_and β isSetOfOpen_finite_intersection. Proof. intros Htrue Hpair L. apply (pr2 (finite_intersection_hProp O)). split. - exact Htrue. - exact Hpair. Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isSetOfOpen_finite_intersection_carac | 38,549 |
Definition isSetOfOpen := isSetOfOpen_union Γ isSetOfOpen_finite_intersection. | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isSetOfOpen | 38,550 |
Definition isTopologicalSpace (X : hSet) := β O : (X β hProp) β hProp, isSetOfOpen O. | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isTopologicalSpace | 38,551 |
Definition TopologicalSpace := β X : hSet, isTopologicalSpace X. | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | TopologicalSpace | 38,552 |
Definition make_TopologicalSpace (X : hSet) (O : (X β hProp) β hProp) (is : isSetOfOpen_union O) (is0 : isSetOfOpen_htrue O) (is1 : isSetOfOpen_and O) : TopologicalSpace := (X,,O,,is,,(isSetOfOpen_finite_intersection_carac _ is0 is1)). | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | make_TopologicalSpace | 38,553 |
Definition pr1TopologicatSpace : TopologicalSpace β hSet := pr1. | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | pr1TopologicatSpace | 38,554 |
Definition isOpen {T : TopologicalSpace} : (T β hProp) β hProp := pr1 (pr2 T). | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isOpen | 38,555 |
Definition Open {T : TopologicalSpace} := β O : T β hProp, isOpen O. | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | Open | 38,556 |
Definition pr1Open {T : TopologicalSpace} : Open β (T β hProp) := pr1. | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | pr1Open | 38,557 |
Lemma isOpen_union : β P : (T β hProp) β hProp, (β A : T β hProp, P A β isOpen A) β isOpen (union P). Proof. apply (pr1 (pr2 (pr2 T))). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isOpen_union | 38,558 |
Lemma isOpen_finite_intersection : β (P : Sequence (T β hProp)), (β m , isOpen (P m)) β isOpen (finite_intersection P). Proof. apply (pr2 (pr2 (pr2 T))). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isOpen_finite_intersection | 38,559 |
Lemma isOpen_hfalse : isOpen (Ξ» _ : T, hfalse). Proof. apply isSetOfOpen_hfalse. intros P H. now apply isOpen_union. Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isOpen_hfalse | 38,560 |
Lemma isOpen_htrue : isOpen (Ξ» _ : T, htrue). Proof. rewrite <- finite_intersection_htrue. apply isOpen_finite_intersection. intros m. induction (nopathsfalsetotrue (pr2 m)). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isOpen_htrue | 38,561 |
Lemma isOpen_and : β A B : T β hProp, isOpen A β isOpen B β isOpen (Ξ» x : T, A x β§ B x). Proof. apply isSetOfOpen_finite_intersection_and. intros P Hp. apply isOpen_finite_intersection. apply Hp. Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isOpen_and | 38,562 |
Lemma isOpen_or : β A B : T β hProp, isOpen A β isOpen B β isOpen (Ξ» x : T, A x β¨ B x). Proof. intros A B Ha Hb. rewrite <- union_or. apply isOpen_union. intros C. apply hinhuniv. apply sumofmaps ; intros ->. - exact Ha. - exact Hb. Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isOpen_or | 38,563 |
Definition neighborhood (x : T) : (T β hProp) β hProp := Ξ» P : T β hProp, β O : Open, O x Γ (β y : T, O y β P y). | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | neighborhood | 38,564 |
Lemma neighborhood_isOpen (P : T β hProp) : (β x, P x β neighborhood x P) <-> isOpen P. Proof. split. - intros Hp. assert (H : β A : T β hProp, isaprop (β y : T, A y β P y)). { intros A. apply impred_isaprop. intro y. apply isapropimpl. apply propproperty. } set (Q := Ξ» A : T β hProp, isOpen A β§ (make_hProp (β y : T, A y β P y) (H A))). assert (X : P = (union Q)). { apply funextfun. intros x. apply hPropUnivalence. - intros Px. generalize (Hp _ Px). apply hinhfun. intros A. exists (pr1 A) ; split. + split. * apply (pr2 (pr1 A)). * exact (pr2 (pr2 A)). + exact (pr1 (pr2 A)). - apply hinhuniv. intros A. apply (pr2 (pr1 (pr2 A))). exact (pr2 (pr2 A)). } rewrite X. apply isOpen_union. intros A Ha. apply (pr1 Ha). - intros Hp x Px. apply hinhpr. exists (P,,Hp). split. + exact Px. + intros y Py. exact Py. Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | neighborhood_isOpen | 38,565 |
Lemma neighborhood_imply : β (x : T) (P Q : T β hProp), (β y : T, P y β Q y) β neighborhood x P β neighborhood x Q. Proof. intros x P Q H. apply hinhfun. intros O. exists (pr1 O). split. - apply (pr1 (pr2 O)). - intros y Hy. apply H. apply (pr2 (pr2 O)). exact Hy. Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | neighborhood_imply | 38,566 |
Lemma neighborhood_forall : β (x : T) (P : T β hProp), (β y, P y) β neighborhood x P. Proof. intros x P H. apply hinhpr. exists ((Ξ» _ : T, htrue),,isOpen_htrue). split. - reflexivity. - intros y _. now apply H. Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | neighborhood_forall | 38,567 |
Lemma neighborhood_and : β (x : T) (A B : T β hProp), neighborhood x A β neighborhood x B β neighborhood x (Ξ» y, A y β§ B y). Proof. intros x A B. apply hinhfun2. intros Oa Ob. exists ((Ξ» x, pr1 Oa x β§ pr1 Ob x) ,, isOpen_and _ _ (pr2 (pr1 Oa)) (pr2 (pr1 Ob))). simpl. split. - split. + apply (pr1 (pr2 Oa)). + apply (pr1 (pr2 Ob)). - intros y Hy. split. + apply (pr2 (pr2 Oa)). apply (pr1 Hy). + apply (pr2 (pr2 Ob)). apply (pr2 Hy). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | neighborhood_and | 38,568 |
Lemma neighborhood_point : β (x : T) (P : T β hProp), neighborhood x P β P x. Proof. intros x P. apply hinhuniv. intros O. apply (pr2 (pr2 O)). apply (pr1 (pr2 O)). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | neighborhood_point | 38,569 |
Lemma neighborhood_neighborhood : β (x : T) (P : T β hProp), neighborhood x P β β Q : T β hProp, neighborhood x Q Γ β y : T, Q y β neighborhood y P. Proof. intros x P. apply hinhfun. intros Q. exists (pr1 Q). split. - apply (pr2 (neighborhood_isOpen _)). + apply (pr2 (pr1 Q)). + apply (pr1 (pr2 Q)). - intros y Qy. apply hinhpr. exists (pr1 Q). split. + exact Qy. + exact (pr2 (pr2 Q)). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | neighborhood_neighborhood | 38,570 |
Definition locally {T : TopologicalSpace} (x : T) : Filter T. Proof. simple refine (make_Filter _ _ _ _ _). - apply (neighborhood x). - abstract (intros A B ; apply neighborhood_imply). - abstract (apply (pr2 (neighborhood_isOpen _)) ; [ apply isOpen_htrue | apply tt]). - abstract (intros A B ; apply neighborhood_and). - abstract (intros A Ha ; apply hinhpr ; exists x ; now apply neighborhood_point in Ha). Defined. | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | locally | 38,571 |
Definition is_base_of_neighborhood {T : TopologicalSpace} (x : T) (B : (T β hProp) β hProp) := (β P : T β hProp, B P β neighborhood x P) Γ (β P : T β hProp, neighborhood x P β β Q : T β hProp, B Q Γ (β t : T, Q t β P t)). | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | is_base_of_neighborhood | 38,572 |
Definition base_of_neighborhood {T : TopologicalSpace} (x : T) := β (B : (T β hProp) β hProp), is_base_of_neighborhood x B. | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | base_of_neighborhood | 38,573 |
Definition pr1base_of_neighborhood {T : TopologicalSpace} (x : T) : base_of_neighborhood x β ((T β hProp) β hProp) := pr1. | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | pr1base_of_neighborhood | 38,574 |
Definition base_default : (T β hProp) β hProp := Ξ» P : T β hProp, isOpen P β§ P x. | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | base_default | 38,575 |
Lemma base_default_1 : β P : T β hProp, base_default P β neighborhood x P. Proof. intros P Hp. apply hinhpr. exists (P,,(pr1 Hp)) ; split. - exact (pr2 Hp). - intros. assumption. Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | base_default_1 | 38,576 |
Lemma base_default_2 : β P : T β hProp, neighborhood x P β β Q : T β hProp, base_default Q Γ (β t : T, Q t β P t). Proof. intros P. apply hinhfun. intros Q. exists (pr1 Q). repeat split. - exact (pr2 (pr1 Q)). - exact (pr1 (pr2 Q)). - exact (pr2 (pr2 Q)). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | base_default_2 | 38,577 |
Definition base_of_neighborhood_default {T : TopologicalSpace} (x : T) : base_of_neighborhood x. Proof. exists (base_default x). split. - now apply base_default_1. - now apply base_default_2. Defined. | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | base_of_neighborhood_default | 38,578 |
Definition neighborhood' {T : TopologicalSpace} (x : T) (B : base_of_neighborhood x) : (T β hProp) β hProp := Ξ» P : T β hProp, β O : T β hProp, B O Γ (β t : T, O t β P t). | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | neighborhood' | 38,579 |
Lemma neighborhood_equiv {T : TopologicalSpace} (x : T) (B : base_of_neighborhood x) : β P, neighborhood' x B P <-> neighborhood x P. Proof. split. - apply hinhuniv. intros O. generalize ((pr1 (pr2 B)) (pr1 O) (pr1 (pr2 O))). apply neighborhood_imply. exact (pr2 (pr2 O)). - intros Hp. generalize (pr2 (pr2 B) P Hp). apply hinhfun. intros O. exists (pr1 O). exact (pr2 O). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | neighborhood_equiv | 38,580 |
Definition isNeighborhood {X : UU} (B : X β (X β hProp) β hProp) := (β x, isfilter_imply (B x)) Γ (β x, isfilter_htrue (B x)) Γ (β x, isfilter_and (B x)) Γ (β x P, B x P β P x) Γ (β x P, B x P β β Q, B x Q Γ β y, Q y β B y P). | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isNeighborhood | 38,581 |
Lemma isNeighborhood_neighborhood {T : TopologicalSpace} : isNeighborhood (neighborhood (T := T)). Proof. repeat split. - intros x A B. apply (neighborhood_imply x). - intros x. apply (pr2 (neighborhood_isOpen _)). + exact (isOpen_htrue (T := T)). + apply tt. - intros A B. apply neighborhood_and. - intros x P. apply neighborhood_point. - intros x P. apply neighborhood_neighborhood. Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isNeighborhood_neighborhood | 38,582 |
Definition topologyfromneighborhood (A : X β hProp) := β x : X, A x β N x A. | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | topologyfromneighborhood | 38,583 |
Lemma isaprop_topologyfromneighborhood : β A, isaprop (topologyfromneighborhood A). Proof. intros A. apply impred_isaprop ; intros x ; apply isapropimpl, propproperty. Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isaprop_topologyfromneighborhood | 38,584 |
Lemma topologyfromneighborhood_open : isSetOfOpen_union (Ξ» A : X β hProp, make_hProp (topologyfromneighborhood A) (isaprop_topologyfromneighborhood A)). Proof. intros L Hl x. apply hinhuniv. intros A. apply Himpl with (pr1 A). - intros y Hy. apply hinhpr. now exists (pr1 A), (pr1 (pr2 A)). - apply Hl. + exact (pr1 (pr2 A)). + exact (pr2 (pr2 A)). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | topologyfromneighborhood_open | 38,585 |
Definition TopologyFromNeighborhood {X : hSet} (N : X β (X β hProp) β hProp) (H : isNeighborhood N) : TopologicalSpace. Proof. use make_TopologicalSpace. - apply X. - intros A. simple refine (make_hProp _ _). + apply (topologyfromneighborhood N A). + apply isaprop_topologyfromneighborhood. - apply topologyfromneighborhood_open. apply (pr1 H). - intros x _. apply (pr1 (pr2 H)). - intros A B Ha Hb x Hx. apply (pr1 (pr2 (pr2 H))). + now apply Ha, (pr1 Hx). + now apply Hb, (pr2 Hx). Defined. | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | TopologyFromNeighborhood | 38,586 |
Lemma TopologyFromNeighborhood_correct {X : hSet} (N : X β (X β hProp) β hProp) (H : isNeighborhood N) : β (x : X) (P : X β hProp), N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. Proof. split. - intros Hx. apply hinhpr. simple refine (tpair _ _ _). + simple refine (tpair _ _ _). * intros y. apply (N y P). * simpl ; intros y Hy. generalize (pr2 (pr2 (pr2 (pr2 H))) _ _ Hy). apply hinhuniv. intros Q. apply (pr1 H) with (2 := pr1 (pr2 Q)). exact (pr2 (pr2 Q)). + split ; simpl. * exact Hx. * intros y. now apply (pr1 (pr2 (pr2 (pr2 H)))). - apply hinhuniv. intros O. apply (pr1 H) with (pr1 (pr1 O)). + apply (pr2 (pr2 O)). + simple refine (pr2 (pr1 O) _ _). exact (pr1 (pr2 O)). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | TopologyFromNeighborhood_correct | 38,587 |
Lemma isNeighborhood_isPreFilter {X : hSet} N : isNeighborhood N -> β x : X, isPreFilter (N x). Proof. intros Hn x. split. - apply (pr1 Hn). - apply isfilter_finite_intersection_carac. + apply (pr1 (pr2 Hn)). + apply (pr1 (pr2 (pr2 Hn))). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isNeighborhood_isPreFilter | 38,588 |
Lemma isNeighborhood_isFilter {X : hSet} N : isNeighborhood N -> β x : X, isFilter (N x). Proof. intros Hn x. split. - apply isNeighborhood_isPreFilter, Hn. - intros A Fa. apply hinhpr. exists x. apply ((pr1 (pr2 (pr2 (pr2 Hn)))) _ _ Fa). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | isNeighborhood_isFilter | 38,589 |
Definition topologygenerated := Ξ» (x : X) (A : X β hProp), (β L : Sequence (X β hProp), (β n, O (L n)) Γ (finite_intersection L x) Γ (β y, finite_intersection L y β A y)). | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | topologygenerated | 38,590 |
Lemma topologygenerated_imply : β x : X, isfilter_imply (topologygenerated x). Proof. intros x A B H. apply hinhfun. intros L. exists (pr1 L). repeat split. - exact (pr1 (pr2 L)). - exact (pr1 (pr2 (pr2 L))). - intros y Hy. apply H, (pr2 (pr2 (pr2 L))), Hy. Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | topologygenerated_imply | 38,591 |
Lemma topologygenerated_htrue : β x : X, isfilter_htrue (topologygenerated x). Proof. intros x. apply hinhpr. exists nil. repeat split; intros n; induction (nopathsfalsetotrue (pr2 n)). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | topologygenerated_htrue | 38,592 |
Lemma topologygenerated_and : β x : X, isfilter_and (topologygenerated x). Proof. intros x A B. apply hinhfun2. intros La Lb. exists (concatenate (pr1 La) (pr1 Lb)). repeat split. - simpl ; intro. apply (coprod_rect (Ξ» x, O (coprod_rect _ _ _ x))) ; intros m. + rewrite coprod_rect_compute_1. exact (pr1 (pr2 La) _). + rewrite coprod_rect_compute_2. exact (pr1 (pr2 Lb) _). - simpl ; intro. apply (coprod_rect (Ξ» y, (coprod_rect (Ξ» _ : stn (length (pr1 La)) β¨Ώ stn (length (pr1 Lb)), X β hProp) (Ξ» j : stn (length (pr1 La)), (pr1 La) j) (Ξ» k : stn (length (pr1 Lb)), (pr1 Lb) k) y) x)) ; intros m. + rewrite coprod_rect_compute_1. exact (pr1 (pr2 (pr2 La)) _). + rewrite coprod_rect_compute_2. exact (pr1 (pr2 (pr2 Lb)) _). - apply (pr2 (pr2 (pr2 La))). intros n. simpl in X0. unfold concatenate' in X0. specialize (X0 (weqfromcoprodofstn_map (length (pr1 La)) (length (pr1 Lb)) (ii1 n))). now rewrite (weqfromcoprodofstn_eq1 _ _) , coprod_rect_compute_1 in X0. - apply (pr2 (pr2 (pr2 Lb))). intros n. simpl in X0. unfold concatenate' in X0. specialize (X0 (weqfromcoprodofstn_map (length (pr1 La)) (length (pr1 Lb)) (ii2 n))). now rewrite (weqfromcoprodofstn_eq1 _ _), coprod_rect_compute_2 in X0. Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | topologygenerated_and | 38,593 |
Lemma topologygenerated_point : β (x : X) (P : X β hProp), topologygenerated x P β P x. Proof. intros x P. apply hinhuniv. intros L. apply (pr2 (pr2 (pr2 L))). exact (pr1 (pr2 (pr2 L))). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | topologygenerated_point | 38,594 |
Lemma topologygenerated_neighborhood : β (x : X) (P : X β hProp), topologygenerated x P β β Q : X β hProp, topologygenerated x Q Γ (β y : X, Q y β topologygenerated y P). Proof. intros x P. apply hinhfun. intros L. exists (finite_intersection (pr1 L)). split. - apply hinhpr. exists (pr1 L). repeat split. + exact (pr1 (pr2 L)). + exact (pr1 (pr2 (pr2 L))). + intros. assumption. - intros y Hy. apply hinhpr. exists (pr1 L). repeat split. + exact (pr1 (pr2 L)). + exact Hy. + exact (pr2 (pr2 (pr2 L))). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | topologygenerated_neighborhood | 38,595 |
Definition TopologyGenerated {X : hSet} (O : (X β hProp) β hProp) : TopologicalSpace. Proof. simple refine (TopologyFromNeighborhood _ _). - apply X. - apply topologygenerated, O. - repeat split. + apply topologygenerated_imply. + apply topologygenerated_htrue. + apply topologygenerated_and. + apply topologygenerated_point. + apply topologygenerated_neighborhood. Defined. | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | TopologyGenerated | 38,596 |
Lemma TopologyGenerated_included {X : hSet} : β (O : (X β hProp) β hProp) (P : X β hProp), O P β isOpen (T := TopologyGenerated O) P. Proof. intros O P Op. apply neighborhood_isOpen. intros x Hx. apply TopologyFromNeighborhood_correct. apply hinhpr. exists (singletonSequence P). repeat split. - induction n as [n Hn]. exact Op. - intros n ; induction n as [n Hn]. exact Hx. - intros y Hy. now apply (Hy (0%nat,,paths_refl _)). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | TopologyGenerated_included | 38,597 |
Lemma TopologyGenerated_smallest {X : hSet} : β (O : (X β hProp) β hProp) (T : isTopologicalSpace X), (β P : X β hProp, O P β pr1 T P) β β P : X β hProp, isOpen (T := TopologyGenerated O) P β pr1 T P. Proof. intros O T Ht P Hp. apply (neighborhood_isOpen (T := (X,,T))). intros x Px. generalize (Hp x Px) ; clear Hp. apply hinhfun. intros L. simple refine (tpair _ _ _). - simple refine (tpair _ _ _). + apply (finite_intersection (pr1 L)). + apply (isOpen_finite_intersection (T := X,,T)). intros m. apply Ht. apply (pr1 (pr2 L)). - split. + exact (pr1 (pr2 (pr2 L))). + exact (pr2 (pr2 (pr2 L))). Qed. | Lemma | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | TopologyGenerated_smallest | 38,598 |
Definition topologydirprod := Ξ» (z : U Γ V) (A : U Γ V β hProp), (β (Ax : U β hProp) (Ay : V β hProp), (Ax (pr1 z) Γ isOpen Ax) Γ (Ay (pr2 z) Γ isOpen Ay) Γ (β x y, Ax x β Ay y β A (x,,y))). | Definition | Topology | Require Import UniMath.Foundations.All. Require Import UniMath.MoreFoundations.All. Require Import UniMath.Algebra.Groups. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Section TopologyFromNeighborhood. End TopologyFromNeighborhood. Definition TopologyFromNeighborhood {X : hSet} Lemma TopologyFromNeighborhood_correct {X : hSet} N x P <-> neighborhood (T := TopologyFromNeighborhood N H) x P. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). apply TopologyFromNeighborhood_correct. simple refine (TopologyFromNeighborhood _ _). | Topology\Topology.v | topologydirprod | 38,599 |