fact
stringlengths
13
15.5k
type
stringclasses
9 values
library
stringclasses
15 values
imports
stringlengths
14
7.64k
filename
stringlengths
12
97
symbolic_name
stringlengths
1
78
index_level
int64
0
38.7k
Definition exch {X Y Z : sortToSet} : sortToSet⟦STLC (X ⊕ (Y ⊕ Z)), STLC (Y ⊕ (X ⊕ Z))⟧ := mexch_instantiated sort Hsort HSET BinCoproductsHSET.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.Foundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Combinatorics.Lists. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Limits.Graphs.Colimits. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.Products. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Coproducts. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.exponentials. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.Chains.All. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Categories.HSET.Core. Require Import UniMath.CategoryTheory.Categories.HSET.Colimits. Require Import UniMath.CategoryTheory.Categories.HSET.Limits. Require Import UniMath.CategoryTheory.Categories.HSET.Structures. Require Import UniMath.CategoryTheory.Categories.StandardCategories. Require Import UniMath.CategoryTheory.Groupoids. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.SumOfSignatures. Require Import UniMath.SubstitutionSystems.BinProductOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial_alt. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.SignatureExamples. Require Import UniMath.SubstitutionSystems.MultiSortedBindingSig. Require Import UniMath.SubstitutionSystems.MultiSorted_alt. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MultiSortedMonadConstruction_alt. Require Import UniMath.SubstitutionSystems.MonadsMultiSorted_alt.
SubstitutionSystems\SimplifiedHSS\STLC_alt.v
exch
38,300
Lemma psubst_interchange {X Y Z : sortToSet} (f : sortToSet⟦X,STLC (Y ⊕ Z)⟧) (g : sortToSet⟦Y, STLC Z⟧) : psubst f · psubst g = exch · psubst (g · weak) · psubst (f · psubst g). Proof. apply subst_interchange_law_gen_instantiated. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.Foundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Combinatorics.Lists. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Limits.Graphs.Colimits. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.Products. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Coproducts. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.exponentials. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.Chains.All. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Categories.HSET.Core. Require Import UniMath.CategoryTheory.Categories.HSET.Colimits. Require Import UniMath.CategoryTheory.Categories.HSET.Limits. Require Import UniMath.CategoryTheory.Categories.HSET.Structures. Require Import UniMath.CategoryTheory.Categories.StandardCategories. Require Import UniMath.CategoryTheory.Groupoids. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.SumOfSignatures. Require Import UniMath.SubstitutionSystems.BinProductOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial_alt. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.SignatureExamples. Require Import UniMath.SubstitutionSystems.MultiSortedBindingSig. Require Import UniMath.SubstitutionSystems.MultiSorted_alt. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MultiSortedMonadConstruction_alt. Require Import UniMath.SubstitutionSystems.MonadsMultiSorted_alt.
SubstitutionSystems\SimplifiedHSS\STLC_alt.v
psubst_interchange
38,301
Lemma subst_interchange {X : sortToSet} (f : sortToSet⟦1,STLC (1 ⊕ X)⟧) (g : sortToSet⟦1,STLC X⟧) : subst f · subst g = exch · subst (g · weak) · subst (f · subst g). Proof. apply subst_interchange_law_gen_instantiated. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.Foundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Combinatorics.Lists. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Limits.Graphs.Colimits. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.Products. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Coproducts. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.exponentials. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.Chains.All. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Categories.HSET.Core. Require Import UniMath.CategoryTheory.Categories.HSET.Colimits. Require Import UniMath.CategoryTheory.Categories.HSET.Limits. Require Import UniMath.CategoryTheory.Categories.HSET.Structures. Require Import UniMath.CategoryTheory.Categories.StandardCategories. Require Import UniMath.CategoryTheory.Groupoids. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.SumOfSignatures. Require Import UniMath.SubstitutionSystems.BinProductOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial_alt. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.SignatureExamples. Require Import UniMath.SubstitutionSystems.MultiSortedBindingSig. Require Import UniMath.SubstitutionSystems.MultiSorted_alt. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MultiSortedMonadConstruction_alt. Require Import UniMath.SubstitutionSystems.MonadsMultiSorted_alt.
SubstitutionSystems\SimplifiedHSS\STLC_alt.v
subst_interchange
38,302
Definition Const_plus_H (X : EndC) : functor EndC EndC := BinCoproduct_of_functors _ _ CPEndC (constant_functor _ _ X) H.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
Const_plus_H
38,303
Definition Id_H : functor EndC EndC := Const_plus_H (functor_identity _ : EndC).
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
Id_H
38,304
Definition eta_from_alg {X : EndC} (T : algebra_ob (Const_plus_H X)) : EndC ⟦ X , `T ⟧. Proof. exact (tau1_from_alg CPEndC (constant_functor _ _ X) H T). Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
eta_from_alg
38,305
Definition ptd_from_alg (T : algebra_ob Id_H) : Ptd. Proof. exists (pr1 T). exact (η T). Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
ptd_from_alg
38,306
Definition tau_from_alg {X : EndC} (T : algebra_ob (Const_plus_H X)) : EndC ⟦H `T, `T⟧. Proof. exact (tau2_from_alg CPEndC (constant_functor _ _ X) H T). Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
tau_from_alg
38,307
Definition bracket_property (T : algebra_ob Id_H) (f : U Z --> `T) (h : `T • (U Z) --> `T) : UU := alg_map _ T •• (U Z) · h = (identity (U Z) ⊕ θ `T) · (identity (U Z) ⊕ #H h) · (BinCoproductArrow (CPEndC _ _ ) f (tau_from_alg T)).
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
bracket_property
38,308
Definition bracket_at (T : algebra_ob Id_H) (f : U Z --> `T): UU := ∃! h : `T • (U Z) --> `T, bracket_property T f h.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
bracket_at
38,309
Definition bracket_property_parts (T : algebra_ob Id_H) (f : U Z --> `T) (h : `T • (U Z) --> `T) : UU := (f = η T •• (U Z) · h) × (θ `T · #H h · τ T = τ T •• (U Z) · h).
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
bracket_property_parts
38,310
Definition bracket_parts_at (T : algebra_ob Id_H) (f : U Z --> `T) : UU := ∃! h : `T • (U Z) --> `T, bracket_property_parts T f h.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
bracket_parts_at
38,311
Lemma parts_from_whole (T : algebra_ob Id_H) (f : U Z --> `T) (h : `T • (U Z) --> `T) : bracket_property T f h → bracket_property_parts T f h. Proof. intro Hyp. split. + unfold eta_from_alg. apply nat_trans_eq_alt. intro c. simpl. unfold coproduct_nat_trans_in1_data. assert (Hyp_inst := nat_trans_eq_pointwise Hyp c); clear Hyp. apply (maponpaths (λ m, BinCoproductIn1 (CP _ _)· m)) in Hyp_inst. match goal with |[ H1 : _ = ?f |- _ = _ ] => intermediate_path (f) end. * clear Hyp_inst. rewrite <- assoc. apply BinCoproductIn1Commutes_right_in_ctx_dir. rewrite id_left. apply BinCoproductIn1Commutes_right_in_ctx_dir. rewrite id_left. apply BinCoproductIn1Commutes_right_dir. apply idpath. * rewrite <- Hyp_inst; clear Hyp_inst. rewrite <- assoc. apply idpath. + unfold tau_from_alg. apply nat_trans_eq_alt. intro c. simpl. unfold coproduct_nat_trans_in2_data. assert (Hyp_inst := nat_trans_eq_pointwise Hyp c); clear Hyp. apply (maponpaths (λ m, BinCoproductIn2 (CP _ _)· m)) in Hyp_inst. match goal with |[ H1 : _ = ?f |- _ = _ ] => intermediate_path (f) end. * clear Hyp_inst. do 2 rewrite <- assoc. apply BinCoproductIn2Commutes_right_in_ctx_dir. simpl. rewrite <- assoc. apply maponpaths. apply BinCoproductIn2Commutes_right_in_ctx_dir. simpl. rewrite <- assoc. apply maponpaths. unfold tau_from_alg. apply BinCoproductIn2Commutes_right_dir. apply idpath. * rewrite <- Hyp_inst; clear Hyp_inst. rewrite <- assoc. apply idpath. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
parts_from_whole
38,312
Lemma whole_from_parts (T : algebra_ob Id_H) (f : U Z --> `T) (h : `T • (U Z) --> `T) : bracket_property_parts T f h → bracket_property T f h. Proof. intros [Hyp1 Hyp2]. apply nat_trans_eq_alt. intro c. apply BinCoproductArrow_eq_cor. + clear Hyp2. assert (Hyp1_inst := nat_trans_eq_pointwise Hyp1 c); clear Hyp1. rewrite <- assoc. apply BinCoproductIn1Commutes_right_in_ctx_dir. rewrite id_left. apply BinCoproductIn1Commutes_right_in_ctx_dir. rewrite id_left. apply BinCoproductIn1Commutes_right_dir. simpl. simpl in Hyp1_inst. rewrite Hyp1_inst. simpl. apply assoc. + clear Hyp1. assert (Hyp2_inst := nat_trans_eq_pointwise Hyp2 c); clear Hyp2. rewrite <- assoc. apply BinCoproductIn2Commutes_right_in_ctx_dir. simpl. rewrite assoc. eapply pathscomp0. * eapply pathsinv0. exact Hyp2_inst. * clear Hyp2_inst. simpl. do 2 rewrite <- assoc. apply maponpaths. apply BinCoproductIn2Commutes_right_in_ctx_dir. simpl. rewrite <- assoc. apply maponpaths. apply BinCoproductIn2Commutes_right_dir. apply idpath. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
whole_from_parts
38,313
Definition bracket_property_parts_identity_nicer (h : `T • `T --> `T) : UU := (identity `T = η T •• `T · h) × (θ `T · #H h · τ T = τ T •• `T · h).
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
bracket_property_parts_identity_nicer
38,314
Lemma bracket_property_parts_identity_nicer_impl1 (h : `T • `T --> `T): bracket_property_parts θ T (identity _) h -> bracket_property_parts_identity_nicer h. Proof. intro Hyp. induction Hyp as [Hyp1 Hyp2]. split. - etrans. 2: { exact Hyp1. } apply nat_trans_eq_alt. intro c. apply idpath. - etrans. { exact Hyp2. } apply idpath. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
bracket_property_parts_identity_nicer_impl1
38,315
Lemma bracket_property_parts_identity_nicer_impl2 (h : `T • `T --> `T): bracket_property_parts_identity_nicer h -> bracket_property_parts θ T (identity _) h.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
bracket_property_parts_identity_nicer_impl2
38,316
Definition heterogeneous_substitution : UU := ∑ (T: algebra_ob Id_H), ∑ (θ : @PrestrengthForSignatureAtPoint C C C H (ptd_from_alg T)), bracket_at θ T (identity _).
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
heterogeneous_substitution
38,317
Definition θ_from_hetsubst (T : heterogeneous_substitution) : @PrestrengthForSignatureAtPoint C C C H (ptd_from_alg T) := pr1 (pr2 T).
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
θ_from_hetsubst
38,318
Definition prejoin_from_hetsubst (T : heterogeneous_substitution) : `T • `T --> `T := pr1 (pr1 (pr2 (pr2 T))).
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
prejoin_from_hetsubst
38,319
Lemma prejoin_from_hetsubst_η (T : heterogeneous_substitution) : identity `T = η T •• `T · (prejoin_from_hetsubst T). Proof. refine (pr1 (bracket_property_parts_identity_nicer_impl1 T (θ_from_hetsubst T) _ _)). apply parts_from_whole. exact (pr2 (pr1 (pr2 (pr2 T)))). Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
prejoin_from_hetsubst_η
38,320
Lemma prejoin_from_hetsubst_τ (T : heterogeneous_substitution) : θ_from_hetsubst T `T · #H (prejoin_from_hetsubst T) · τ T = τ T •• `T · (prejoin_from_hetsubst T). Proof. refine (pr2 (bracket_property_parts_identity_nicer_impl1 T (θ_from_hetsubst T) _ _)). apply parts_from_whole. exact (pr2 (pr1 (pr2 (pr2 T)))). Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
prejoin_from_hetsubst_τ
38,321
Definition bracket (T : algebra_ob Id_H) : UU := ∏ (Z : Ptd) (f : U Z --> `T), bracket_at (nat_trans_fix_snd_arg _ _ _ _ _ θ Z) T f.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
bracket
38,322
Lemma isaprop_bracket (T : algebra_ob Id_H) : isaprop (bracket T). Proof. apply impred_isaprop; intro Z. apply impred_isaprop; intro f. apply isapropiscontr. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
isaprop_bracket
38,323
Definition bracket_parts (T : algebra_ob Id_H) : UU := ∏ (Z : Ptd) (f : U Z --> `T), bracket_parts_at (nat_trans_fix_snd_arg _ _ _ _ _ θ Z) T f.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
bracket_parts
38,324
Definition hss : UU := ∑ (T: algebra_ob Id_H), bracket H θ T. Coercion hetsubst_from_hss (T : hss) : heterogeneous_substitution H. Proof. exists (pr1 T). use tpair. - apply (nat_trans_fix_snd_arg _ _ _ _ _ θ). - apply (pr2 T). Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
hss
38,325
Definition fbracket (T : hss) (Z : Ptd) (f : U Z --> `T) : `T • (U Z) --> `T := pr1 (pr1 (pr2 T Z f)).
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
fbracket
38,326
Definition fbracket_unique_pointwise (T : hss) {Z : Ptd} (f : U Z --> `T) : ∏ (α : functor_composite (U Z) `T ⟹ pr1 `T), (∏ c : C, pr1 f c = pr1 (η T) (pr1 (U Z) c) · α c) → (∏ c : C, pr1 (θ (`T ⊗ Z)) c · pr1 (#H α) c · pr1 (τ T) c = pr1 (τ T) (pr1 (U Z) c) · α c) → α = ⦃f⦄_{Z}.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
fbracket_unique_pointwise
38,327
Definition fbracket_unique (T : hss) {Z : Ptd} (f : U Z --> `T) : ∏ α : `T • (U Z) --> `T, bracket_property_parts H (nat_trans_fix_snd_arg _ _ _ _ _ θ Z) T f α → α = ⦃f⦄_{Z}.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
fbracket_unique
38,328
Definition fbracket_unique_target_pointwise (T : hss) {Z : Ptd} (f : U Z --> `T) : ∏ α : `T • U Z --> `T, bracket_property_parts H (nat_trans_fix_snd_arg _ _ _ _ _ θ Z) T f α → ∏ c, pr1 α c = pr1 ⦃f⦄_{Z} c.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
fbracket_unique_target_pointwise
38,329
Lemma fbracket_η (T : hss) : ∏ {Z : Ptd} (f : U Z --> `T), f = η T •• U Z · ⦃f⦄_{Z}. Proof. intros Z f. exact (pr1 (parts_from_whole _ _ _ _ _ (pr2 (pr1 (pr2 T Z f))))). Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
fbracket_η
38,330
Lemma fbracket_τ (T : hss) : ∏ {Z : Ptd} (f : U Z --> `T), θ (`T ⊗ Z) · #H ⦃f⦄_{Z} · τ T = τ T •• U Z · ⦃f⦄_{Z}. Proof. intros Z f. exact (pr2 (parts_from_whole _ _ _ _ _ (pr2 (pr1 (pr2 T Z f))))). Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
fbracket_τ
38,331
Lemma fbracket_natural (T : hss) {Z Z' : Ptd} (f : Z --> Z') (g : U Z' --> `T) : (`T ∘ #U f : EndC⟦ `T • U Z , `T • U Z' ⟧) · ⦃g⦄_{Z'} = ⦃#U f · g⦄_{Z}. Proof. apply fbracket_unique_pointwise. - simpl. intro c. rewrite assoc. pose proof (nat_trans_ax (η T)) as H'. simpl in H'. rewrite <- H'; clear H'. rewrite <- assoc. apply maponpaths. pose proof (nat_trans_eq_weq (homset_property C) _ _ (fbracket_η T g)) as X. simpl in X. exact (X _ ). - intro c; simpl. assert (H':=nat_trans_ax (τ T)). simpl in H'. eapply pathscomp0. 2: apply assoc'. eapply pathscomp0. 2: { apply cancel_postcomposition. apply H'. } clear H'. set (H':=fbracket_τ T g). simpl in H'. assert (X:= nat_trans_eq_pointwise H' c). simpl in X. rewrite <- assoc. rewrite <- assoc. transitivity ( # (pr1 (H ((`T)))) (pr1 f c) · (pr1 (θ ((`T) ⊗ Z')) c)· pr1 (# H ⦃g⦄_{Z'}) c· pr1 (τ T) c). 2: { rewrite <- assoc. rewrite <- assoc. apply maponpaths. repeat rewrite assoc. apply X. } clear X. set (A:=θ_nat_2_pointwise). simpl in *. set (A':= A C C C H θ (`T) Z Z'). simpl in A'. set (A2:= A' f). clearbody A2; clear A'; clear A. rewrite A2; clear A2. repeat rewrite <- assoc. apply maponpaths. simpl. repeat rewrite assoc. apply cancel_postcomposition. rewrite (functor_comp H). apply cancel_postcomposition. clear H'. set (A:=horcomp_id_postwhisker C C C). rewrite A; try apply homset_property. apply idpath. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
fbracket_natural
38,332
Lemma compute_fbracket (T : hss) : ∏ {Z : Ptd} (f : Z --> ptd_from_alg T), ⦃#U f⦄_{Z} = (`T ∘ # U f : EndC⟦`T • U Z , `T • U (ptd_from_alg T)⟧) · ⦃identity (U (ptd_from_alg T))⦄_{ptd_from_alg T}. Proof. intros Z f. assert (A : f = f · identity _ ). { rewrite id_right; apply idpath. } rewrite A. rewrite functor_comp. rewrite <- fbracket_natural. rewrite id_right. apply idpath. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
compute_fbracket
38,333
Lemma heterogeneous_substitution_into_bracket {Z : Ptd} (f : Z --> ptd_from_alg T0) : bracket_property H (nat_trans_fix_snd_arg _ _ _ _ _ θ Z) T0 (#U f) ((` T0 ∘ #U f : EndC ⟦ `T0 • U Z , `T0 • U (ptd_from_alg T0) ⟧) · prejoin_from_hetsubst T0). Proof. apply whole_from_parts. split. - apply nat_trans_eq_alt. intro c. induction f as [f pt]. simpl. assert (alg_map_nat := nat_trans_ax (alg_map Id_H T0) _ _ (pr1 f c)). etrans. 2: { rewrite <- assoc. apply maponpaths. rewrite assoc. apply cancel_postcomposition. exact alg_map_nat. } clear alg_map_nat. etrans. 2: { do 2 rewrite assoc. do 2 apply cancel_postcomposition. apply pathsinv0. unfold Id_H. simpl. apply BinCoproductIn1Commutes. } simpl. etrans. { apply pathsinv0. apply id_right. } do 2 rewrite <- assoc. apply maponpaths. rewrite assoc. assert (prejoin_ok := prejoin_from_hetsubst_η T0). apply (maponpaths pr1) in prejoin_ok. apply toforallpaths in prejoin_ok. apply prejoin_ok. - rewrite functor_comp. apply nat_trans_eq_alt. intro c. induction f as [f pt]. simpl. assert (alg_map_nat := nat_trans_ax (alg_map Id_H T0) _ _ (pr1 f c)). etrans. 2: { rewrite <- assoc. apply maponpaths. rewrite assoc. apply cancel_postcomposition. exact alg_map_nat. } etrans. 2: { do 2 rewrite assoc. do 2 apply cancel_postcomposition. apply pathsinv0. unfold Id_H. simpl. apply BinCoproductIn2Commutes. } assert (prejoin_ok := prejoin_from_hetsubst_τ T0). apply (maponpaths pr1) in prejoin_ok. apply toforallpaths in prejoin_ok. assert (prejoin_ok_inst := prejoin_ok c). simpl in prejoin_ok_inst. etrans. { repeat rewrite assoc. do 3 apply cancel_postcomposition. apply pathsinv0. assert (theta_nat_2 := θ_nat_2_pointwise _ _ _ H θ `T0 _ _ (f,,pt) c). rewrite horcomp_id_postwhisker in theta_nat_2; try apply homset_property. apply theta_nat_2. } etrans. { repeat rewrite <- assoc. apply maponpaths. rewrite assoc. exact prejoin_ok_inst. } clear prejoin_ok prejoin_ok_inst. repeat rewrite assoc. apply idpath. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
heterogeneous_substitution_into_bracket
38,334
Definition isAlgMor {T T' : Alg} (f : T --> T') : UU := #H (# U f) · τ T' = compose (C:=EndC) (τ T) (#U f).
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
isAlgMor
38,335
Lemma isaprop_isAlgMor (T T' : Alg) (f : T --> T') : isaprop (isAlgMor f). Proof. apply isaset_nat_trans. apply hs. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
isaprop_isAlgMor
38,336
Lemma τ_part_of_alg_mor (T T' : @algebra_ob [C, C] Id_H) (β : @algebra_mor [C, C] Id_H T T'): #H β · τ T' = compose (C:=EndC) (τ T) β. Proof. assert (β_is_alg_mor := pr2 β). simpl in β_is_alg_mor. assert (β_is_alg_mor_inst := maponpaths (fun m:EndC⟦_,_⟧ => (BinCoproductIn2 (CPEndC _ _))· m) β_is_alg_mor); clear β_is_alg_mor. simpl in β_is_alg_mor_inst. apply nat_trans_eq_alt. intro c. assert (β_is_alg_mor_inst':= nat_trans_eq_pointwise β_is_alg_mor_inst c); clear β_is_alg_mor_inst. simpl in β_is_alg_mor_inst'. rewrite assoc in β_is_alg_mor_inst'. eapply pathscomp0. 2: { eapply pathsinv0. exact β_is_alg_mor_inst'. } clear β_is_alg_mor_inst'. apply BinCoproductIn2Commutes_right_in_ctx_dir. simpl. rewrite <- assoc. apply idpath. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
τ_part_of_alg_mor
38,337
Lemma is_ptd_mor_alg_mor (T T' : @algebra_ob [C, C] Id_H) (β : @algebra_mor [C, C] Id_H T T') : @is_ptd_mor C (ptd_from_alg T) (ptd_from_alg T') (pr1 β). Proof. simpl. unfold is_ptd_mor. simpl. intro c. rewrite <- assoc. assert (X:=pr2 β). assert (X':= nat_trans_eq_pointwise X c). simpl in *. etrans. { apply maponpaths. apply X'. } unfold coproduct_nat_trans_in1_data. repeat rewrite assoc. unfold coproduct_nat_trans_data. etrans. { apply cancel_postcomposition. apply BinCoproductIn1Commutes. } simpl. repeat rewrite <- assoc. apply id_left. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
is_ptd_mor_alg_mor
38,338
Definition ptd_from_alg_mor {T T' : algebra_ob Id_H} (β : algebra_mor _ T T') : ptd_from_alg T --> ptd_from_alg T'. Proof. exists (pr1 β). apply is_ptd_mor_alg_mor. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
ptd_from_alg_mor
38,339
Definition ptd_from_alg_functor_data : functor_data (category_FunctorAlg Id_H) Ptd. Proof. exists ptd_from_alg. intros T T' β. apply ptd_from_alg_mor. exact β. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
ptd_from_alg_functor_data
38,340
Lemma is_functor_ptd_from_alg_functor_data : is_functor ptd_from_alg_functor_data. Proof. split; simpl; intros. + unfold functor_idax. intro T. apply (invmap (eq_ptd_mor_cat _ _ _)). apply (invmap (eq_ptd_mor _ _)). apply idpath. + unfold functor_compax. intros T T' T'' β β'. apply (invmap (eq_ptd_mor_cat _ _ _)). apply (invmap (eq_ptd_mor _ _)). apply idpath. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
is_functor_ptd_from_alg_functor_data
38,341
Definition ptd_from_alg_functor: functor (category_FunctorAlg Id_H) Ptd := tpair _ _ is_functor_ptd_from_alg_functor_data.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
ptd_from_alg_functor
38,342
Definition isbracketMor {T T' : hss} (β : algebra_mor _ T T') : UU := ∏ (Z : Ptd) (f : U Z --> `T), ⦃f⦄_{Z} · β = β •• U Z · ⦃f · #U (# ptd_from_alg_functor β)⦄_{Z}.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
isbracketMor
38,343
Lemma isaprop_isbracketMor (T T' : hss) (β : algebra_mor _ T T') : isaprop (isbracketMor β). Proof. do 2 (apply impred; intro). apply isaset_nat_trans. apply homset_property. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
isaprop_isbracketMor
38,344
Definition ishssMor {T T' : hss} (β : algebra_mor _ T T') : UU := isbracketMor β.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
ishssMor
38,345
Definition hssMor (T T' : hss) : UU := ∑ β : algebra_mor _ T T', ishssMor β.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
hssMor
38,346
Definition isAlgMor_hssMor {T T' : hss} (β : hssMor T T') : isAlgMor β := pr1 (pr2 β).
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
isAlgMor_hssMor
38,347
Definition isbracketMor_hssMor {T T' : hss} (β : hssMor T T') : isbracketMor β := pr2 β.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
isbracketMor_hssMor
38,348
Definition hssMor_eq1 : β = β' ≃ (pr1 β = pr1 β'). Proof. apply subtypeInjectivity. intro γ. apply isaprop_isbracketMor. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
hssMor_eq1
38,349
Definition hssMor_eq : β = β' ≃ (β : EndC ⟦ _ , _ ⟧) = β'. Proof. eapply weqcomp. - apply hssMor_eq1. - apply subtypeInjectivity. intro. apply isaset_nat_trans. apply homset_property. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
hssMor_eq
38,350
Lemma isaset_hssMor (T T' : hss) : isaset (hssMor T T'). Proof. intros β β'. apply (isofhlevelweqb _ (hssMor_eq _ _ β β')). apply isaset_nat_trans. apply homset_property. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
isaset_hssMor
38,351
Lemma ishssMor_id (T : hss) : ishssMor (identity (C:=category_FunctorAlg _) (pr1 T)). Proof. unfold ishssMor. unfold isbracketMor. intros Z f. rewrite id_right. rewrite functor_id. rewrite id_right. apply pathsinv0. set (H2:=pre_composition_functor _ _ C (U Z)). set (H2' := functor_id H2). simpl in H2'. simpl. rewrite H2'. rewrite (@id_left EndC). apply idpath. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
ishssMor_id
38,352
Definition hssMor_id (T : hss) : hssMor _ _ := tpair _ _ (ishssMor_id T).
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
hssMor_id
38,353
Lemma ishssMor_comp {T T' T'' : hss} (β : hssMor T T') (γ : hssMor T' T'') : ishssMor (compose (C:=category_FunctorAlg _) (pr1 β) (pr1 γ)). Proof. unfold ishssMor. unfold isbracketMor. intros Z f. eapply pathscomp0; [apply assoc|]. etrans. { apply cancel_postcomposition. apply isbracketMor_hssMor. } rewrite <- assoc. etrans. { apply maponpaths. apply isbracketMor_hssMor. } rewrite assoc. do 2 rewrite functor_comp. rewrite assoc. apply cancel_postcomposition. apply pathsinv0, (functor_comp (pre_composition_functor _ _ C (U Z)) ). Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
ishssMor_comp
38,354
Definition hssMor_comp {T T' T'' : hss} (β : hssMor T T') (γ : hssMor T' T'') : hssMor T T'' := tpair _ _ (ishssMor_comp β γ).
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
hssMor_comp
38,355
Definition hss_obmor : precategory_ob_mor. Proof. exists hss. exact hssMor. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
hss_obmor
38,356
Definition hss_precategory_data : precategory_data. Proof. exists hss_obmor. split. - exact hssMor_id. - exact @hssMor_comp. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
hss_precategory_data
38,357
Lemma is_precategory_hss : is_precategory hss_precategory_data. Proof. apply is_precategory_one_assoc_to_two. repeat split; intros. - apply (invmap (hssMor_eq _ _ _ _ )). apply (@id_left EndC). - apply (invmap (hssMor_eq _ _ _ _ )). apply (@id_right EndC). - apply (invmap (hssMor_eq _ _ _ _ )). apply (@assoc EndC). Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
is_precategory_hss
38,358
Definition hss_precategory : precategory := tpair _ _ is_precategory_hss.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
hss_precategory
38,359
Lemma has_homsets_precategory_hss : has_homsets hss_precategory. Proof. red. intros T T'. apply isaset_hssMor. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
has_homsets_precategory_hss
38,360
Definition hss_category : category := hss_precategory ,, has_homsets_precategory_hss.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v
hss_category
38,361
Definition GenMendlerIteration : ∏ (C : category) (F : functor C C) (μF_Initial : Initial (FunctorAlg F)) (C' : category) (X : C') (L : functor C C'), is_left_adjoint L → ∏ ψ : ψ_source C C' X L ⟹ ψ_target C F C' X L, ∃! h : C' ⟦ L ` (InitialObject μF_Initial), X ⟧, # L (alg_map F (InitialObject μF_Initial)) · h = ψ ` (InitialObject μF_Initial) h. Proof. simpl. apply GenMendlerIteration. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
GenMendlerIteration
38,362
Theorem fusion_law : ∏ (C : category) (F : functor C C) (μF_Initial : Initial (category_FunctorAlg F)) (C' : category) (X X' : C') (L : functor C C') (is_left_adj_L : is_left_adjoint L) (ψ : ψ_source C C' X L ⟹ ψ_target C F C' X L) (L' : functor C C') (is_left_adj_L' : is_left_adjoint L') (ψ' : ψ_source C C' X' L' ⟹ ψ_target C F C' X' L') (Φ : yoneda_objects C' X • functor_opp L ⟹ yoneda_objects C' X' • functor_opp L'), let T:= (` (InitialObject μF_Initial)) in ψ T · Φ (F T) = Φ T · ψ' T → Φ T (It μF_Initial X L is_left_adj_L ψ) = It μF_Initial X' L' is_left_adj_L' ψ'. Proof. apply fusion_law. Qed.
Theorem
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
fusion_law
38,363
Lemma fbracket_natural : ∏ (C : category) (CP : BinCoproducts C) (H : Presignature C C C) (T : hss CP H) (Z Z' : category_Ptd C) (f : category_Ptd C ⟦ Z, Z' ⟧) (g : [C,C] ⟦ U Z', `T ⟧), (`T ∘ # U f : [C, C] ⟦ `T • U Z , `T • U Z' ⟧) · ⦃g⦄_{Z'} = ⦃#U f · g⦄_{Z} . Proof. apply fbracket_natural. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
fbracket_natural
38,364
Lemma compute_fbracket : ∏ (C : category) (CP : BinCoproducts C) (H : Presignature C C C) (T : hss CP H) (Z : category_Ptd C) (f : category_Ptd C ⟦ Z, ptd_from_alg T ⟧), ⦃#U f⦄_{Z} = (`T ∘ # U f : [C, C] ⟦ `T • U Z , `T • U _ ⟧) · ⦃ identity (U (ptd_from_alg T)) ⦄_{ptd_from_alg T}. Proof. apply compute_fbracket. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
compute_fbracket
38,365
Definition Monad_from_hss : ∏ (C : category) (CP : BinCoproducts C) (H : Signature C C C), hss CP H → Monad C. Proof. apply Monad_from_hss. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
Monad_from_hss
38,366
Definition hss_to_monad_functor : ∏ (C : category) (CP : BinCoproducts C) (H : Signature C C C), functor (hss_precategory CP H) (category_Monad C). Proof. apply hss_to_monad_functor. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
hss_to_monad_functor
38,367
Lemma faithful_hss_to_monad : ∏ (C : category) (CP : BinCoproducts C) (H : Signature C C C), faithful (hss_to_monad_functor C CP H). Proof. apply faithful_hss_to_monad. Defined.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
faithful_hss_to_monad
38,368
Definition bracket_for_initial_algebra : ∏ (C : category) (CP : BinCoproducts C), (∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) → ∏ (H : Presignature C C C) (IA : Initial (FunctorAlg (Id_H C CP H))) (Z : category_Ptd C), [C, C] ⟦ U Z, U (ptd_from_alg (InitAlg C CP H IA)) ⟧ → [C, C] ⟦ ℓ (U Z) ` (InitialObject IA), ` (InitAlg C CP H IA) ⟧. Proof. apply bracket_Thm15. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
bracket_for_initial_algebra
38,369
Lemma bracket_Thm15_ok_η : ∏ (C : category) (CP : BinCoproducts C) (KanExt : ∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) (H : Presignature C C C) (IA : Initial (FunctorAlg (Id_H C CP H))) (Z : category_Ptd C) (f : [C,C] ⟦ U Z, U (ptd_from_alg (InitAlg C CP H IA))⟧), f = # (pr1 (ℓ (U Z))) (η (InitAlg C CP H IA)) · bracket_Thm15 C CP KanExt H IA Z f. Proof. apply bracket_Thm15_ok_part1. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
bracket_Thm15_ok_η
38,370
Lemma bracket_Thm15_ok_τ : ∏ (C : category) (CP : BinCoproducts C) (KanExt : ∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) (H : Presignature C C C) (IA : Initial (FunctorAlg (Id_H C CP H))) (Z : category_Ptd C) (f : [C,C] ⟦ U Z, U (ptd_from_alg (InitAlg C CP H IA)) ⟧), (theta H) (` (InitAlg C CP H IA) ⊗ Z) · # H (bracket_Thm15 C CP KanExt H IA Z f) · τ (InitAlg C CP H IA) = # (pr1 (ℓ (U Z))) (τ (InitAlg C CP H IA)) · bracket_Thm15 C CP KanExt H IA Z f. Proof. apply bracket_Thm15_ok_part2. Qed.
Lemma
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
bracket_Thm15_ok_τ
38,371
Definition Initial_HSS : ∏ (C : category) (CP : BinCoproducts C), (∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) → ∏ H : Presignature C C C, Initial (FunctorAlg (Id_H C CP H)) → Initial (hss_category CP H). Proof. apply InitialHSS. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
Initial_HSS
38,372
Definition Sum_of_Signatures : ∏ (C D D': category), BinCoproducts D → Signature C D D' → Signature C D D' → Signature C D D'. Proof. apply BinSum_of_Signatures. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
Sum_of_Signatures
38,373
Definition App_Sig : ∏ (C : category), BinProducts C → Signature C C C. Proof. apply App_Sig. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
App_Sig
38,374
Definition Lam_Sig : ∏ (C : category), Terminal C → BinCoproducts C → BinProducts C → Signature C C C. Proof. apply Lam_Sig. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
Lam_Sig
38,375
Definition Flat_Sig : ∏ (C : category), Signature C C C. Proof. apply Flat_Sig. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
Flat_Sig
38,376
Definition Lam_Flatten : ∏ (C : category) (terminal : Terminal C) (CC : BinCoproducts C) (CP : BinProducts C), (∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) → ∏ Lam_Initial : Initial (FunctorAlg (Id_H C CC (Lam_Sig C terminal CC CP))), [C, C] ⟦ (Flat_H C) ` (InitialObject Lam_Initial), ` (InitialObject Lam_Initial) ⟧. Proof. apply Lam_Flatten. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
Lam_Flatten
38,377
Definition fbracket_for_LamE_algebra_on_Lam : ∏ (C : category) (terminal : Terminal C) (CC : BinCoproducts C) (CP : BinProducts C) (KanExt : ∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) (Lam_Initial : Initial (FunctorAlg (Id_H C CC (Lam_Sig C terminal CC CP)))) (Z : category_Ptd C), category_Ptd C ⟦ Z , (ptd_from_alg_functor CC (LamE_Sig C terminal CC CP)) (LamE_algebra_on_Lam C terminal CC CP KanExt Lam_Initial) ⟧ → [C, C] ⟦ functor_composite (U Z) ` (LamE_algebra_on_Lam C terminal CC CP KanExt Lam_Initial), ` (LamE_algebra_on_Lam C terminal CC CP KanExt Lam_Initial) ⟧. Proof. apply fbracket_for_LamE_algebra_on_Lam. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
fbracket_for_LamE_algebra_on_Lam
38,378
Definition EVAL : ∏ (C : category) (terminal : Terminal C) (CC : BinCoproducts C) (CP : BinProducts C) (KanExt : ∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) (Lam_Initial : Initial (FunctorAlg (Id_H C CC (LamSignature.Lam_Sig C terminal CC CP)))) (LamE_Initial : Initial (FunctorAlg (Id_H C CC (LamE_Sig C terminal CC CP)))), hss_category CC (LamE_Sig C terminal CC CP) ⟦ InitialObject (LamEHSS_Initial C terminal CC CP KanExt LamE_Initial), LamE_model_on_Lam C terminal CC CP KanExt Lam_Initial ⟧. Proof. apply FLATTEN. Defined.
Definition
SubstitutionSystems
Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation.
SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v
EVAL
38,379
Definition top_disp_cat_ob_mor : disp_cat_ob_mor hset_category. Proof. use make_disp_cat_ob_mor. - intro X. exact (isTopologicalSpace X). - intros X Y T U f. exact (@continuous (X,,T) (Y,,U) f). Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.Topology.Topology. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Categories.HSET.Core. Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Topology\CategoryTop.v
top_disp_cat_ob_mor
38,380
Definition top_disp_cat_data : disp_cat_data hset_category. Proof. exists top_disp_cat_ob_mor. split. - do 5 intro. assumption. - intros *. apply continuous_funcomp. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.Topology.Topology. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Categories.HSET.Core. Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Topology\CategoryTop.v
top_disp_cat_data
38,381
Definition top_disp_cat_axioms : disp_cat_axioms hset_category top_disp_cat_data. Proof. do 3 (split ; intros ; try (apply proofirrelevance, isaprop_continuous)). apply isasetaprop, isaprop_continuous. Defined.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.Topology.Topology. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Categories.HSET.Core. Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Topology\CategoryTop.v
top_disp_cat_axioms
38,382
Definition disp_top : disp_cat hset_category := _ ,, top_disp_cat_axioms.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.Topology.Topology. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Categories.HSET.Core. Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Topology\CategoryTop.v
disp_top
38,383
Definition isfilter_imply := ∏ A B : X → hProp, (∏ x : X, A x → B x) → F A → F B.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isfilter_imply
38,384
Lemma isaprop_isfilter_imply : isaprop isfilter_imply. Proof. apply impred_isaprop ; intro A. apply impred_isaprop ; intro B. apply isapropimpl. apply isapropimpl. apply propproperty. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isaprop_isfilter_imply
38,385
Definition isfilter_finite_intersection := ∏ (L : Sequence (X → hProp)), (∏ n, F (L n)) → F (finite_intersection L).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isfilter_finite_intersection
38,386
Lemma isaprop_isfilter_finite_intersection : isaprop isfilter_finite_intersection. Proof. apply impred_isaprop ; intros L. apply isapropimpl. apply propproperty. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isaprop_isfilter_finite_intersection
38,387
Definition isfilter_htrue : hProp := F (λ _ : X, htrue).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isfilter_htrue
38,388
Definition isfilter_and := ∏ A B : X → hProp, F A → F B → F (λ x : X, A x ∧ B x).
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isfilter_and
38,389
Lemma isaprop_isfilter_and : isaprop isfilter_and. Proof. apply impred_isaprop ; intro A. apply impred_isaprop ; intro B. apply isapropimpl. apply isapropimpl. apply propproperty. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isaprop_isfilter_and
38,390
Definition isfilter_notempty := ∏ A : X → hProp, F A → ∃ x : X, A x.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isfilter_notempty
38,391
Lemma isaprop_isfilter_notempty : isaprop isfilter_notempty. Proof. apply impred_isaprop ; intro A. apply isapropimpl. apply propproperty. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isaprop_isfilter_notempty
38,392
Lemma isfilter_finite_intersection_htrue : isfilter_finite_intersection → isfilter_htrue. Proof. intros Hand. unfold isfilter_htrue. rewrite <- finite_intersection_htrue. apply Hand. intros m. apply fromempty. generalize (pr2 m). now apply negnatlthn0. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isfilter_finite_intersection_htrue
38,393
Lemma isfilter_finite_intersection_and : isfilter_finite_intersection → isfilter_and. Proof. intros Hand A B Fa Fb. rewrite <- finite_intersection_and. apply Hand. intros m. induction m as [m Hm]. induction m as [ | m _]. - exact Fa. - exact Fb. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isfilter_finite_intersection_and
38,394
Lemma isfilter_finite_intersection_carac : isfilter_htrue → isfilter_and → isfilter_finite_intersection. Proof. intros Htrue Hand L. apply (pr2 (finite_intersection_hProp F)). split. - exact Htrue. - exact Hand. Qed.
Lemma
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isfilter_finite_intersection_carac
38,395
Definition isPreFilter {X : UU} (F : (X → hProp) → hProp) := isfilter_imply F × isfilter_finite_intersection F.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
isPreFilter
38,396
Definition PreFilter (X : UU) := ∑ (F : (X → hProp) → hProp), isPreFilter F.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
PreFilter
38,397
Definition make_PreFilter {X : UU} (F : (X → hProp) → hProp) (Himpl : isfilter_imply F) (Htrue : isfilter_htrue F) (Hand : isfilter_and F) : PreFilter X := F,, Himpl,, isfilter_finite_intersection_carac F Htrue Hand.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
make_PreFilter
38,398
Definition pr1PreFilter (X : UU) (F : PreFilter X) : (X → hProp) → hProp := pr1 F.
Definition
Topology
Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA.
Topology\Filters.v
pr1PreFilter
38,399