fact
stringlengths 13
15.5k
| type
stringclasses 9
values | library
stringclasses 15
values | imports
stringlengths 14
7.64k
⌀ | filename
stringlengths 12
97
| symbolic_name
stringlengths 1
78
| index_level
int64 0
38.7k
|
---|---|---|---|---|---|---|
Definition exch {X Y Z : sortToSet} : sortToSet⟦STLC (X ⊕ (Y ⊕ Z)), STLC (Y ⊕ (X ⊕ Z))⟧ := mexch_instantiated sort Hsort HSET BinCoproductsHSET. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.Foundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Combinatorics.Lists. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Limits.Graphs.Colimits. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.Products. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Coproducts. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.exponentials. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.Chains.All. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Categories.HSET.Core. Require Import UniMath.CategoryTheory.Categories.HSET.Colimits. Require Import UniMath.CategoryTheory.Categories.HSET.Limits. Require Import UniMath.CategoryTheory.Categories.HSET.Structures. Require Import UniMath.CategoryTheory.Categories.StandardCategories. Require Import UniMath.CategoryTheory.Groupoids. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.SumOfSignatures. Require Import UniMath.SubstitutionSystems.BinProductOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial_alt. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.SignatureExamples. Require Import UniMath.SubstitutionSystems.MultiSortedBindingSig. Require Import UniMath.SubstitutionSystems.MultiSorted_alt. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MultiSortedMonadConstruction_alt. Require Import UniMath.SubstitutionSystems.MonadsMultiSorted_alt. | SubstitutionSystems\SimplifiedHSS\STLC_alt.v | exch | 38,300 |
Lemma psubst_interchange {X Y Z : sortToSet} (f : sortToSet⟦X,STLC (Y ⊕ Z)⟧) (g : sortToSet⟦Y, STLC Z⟧) : psubst f · psubst g = exch · psubst (g · weak) · psubst (f · psubst g). Proof. apply subst_interchange_law_gen_instantiated. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.Foundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Combinatorics.Lists. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Limits.Graphs.Colimits. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.Products. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Coproducts. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.exponentials. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.Chains.All. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Categories.HSET.Core. Require Import UniMath.CategoryTheory.Categories.HSET.Colimits. Require Import UniMath.CategoryTheory.Categories.HSET.Limits. Require Import UniMath.CategoryTheory.Categories.HSET.Structures. Require Import UniMath.CategoryTheory.Categories.StandardCategories. Require Import UniMath.CategoryTheory.Groupoids. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.SumOfSignatures. Require Import UniMath.SubstitutionSystems.BinProductOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial_alt. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.SignatureExamples. Require Import UniMath.SubstitutionSystems.MultiSortedBindingSig. Require Import UniMath.SubstitutionSystems.MultiSorted_alt. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MultiSortedMonadConstruction_alt. Require Import UniMath.SubstitutionSystems.MonadsMultiSorted_alt. | SubstitutionSystems\SimplifiedHSS\STLC_alt.v | psubst_interchange | 38,301 |
Lemma subst_interchange {X : sortToSet} (f : sortToSet⟦1,STLC (1 ⊕ X)⟧) (g : sortToSet⟦1,STLC X⟧) : subst f · subst g = exch · subst (g · weak) · subst (f · subst g). Proof. apply subst_interchange_law_gen_instantiated. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.Foundations.Sets. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Combinatorics.Lists. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Limits.Graphs.Colimits. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.Products. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Coproducts. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.exponentials. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.Chains.All. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Categories.HSET.Core. Require Import UniMath.CategoryTheory.Categories.HSET.Colimits. Require Import UniMath.CategoryTheory.Categories.HSET.Limits. Require Import UniMath.CategoryTheory.Categories.HSET.Structures. Require Import UniMath.CategoryTheory.Categories.StandardCategories. Require Import UniMath.CategoryTheory.Groupoids. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.SumOfSignatures. Require Import UniMath.SubstitutionSystems.BinProductOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial_alt. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.SignatureExamples. Require Import UniMath.SubstitutionSystems.MultiSortedBindingSig. Require Import UniMath.SubstitutionSystems.MultiSorted_alt. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MultiSortedMonadConstruction_alt. Require Import UniMath.SubstitutionSystems.MonadsMultiSorted_alt. | SubstitutionSystems\SimplifiedHSS\STLC_alt.v | subst_interchange | 38,302 |
Definition Const_plus_H (X : EndC) : functor EndC EndC := BinCoproduct_of_functors _ _ CPEndC (constant_functor _ _ X) H. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | Const_plus_H | 38,303 |
Definition Id_H : functor EndC EndC := Const_plus_H (functor_identity _ : EndC). | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | Id_H | 38,304 |
Definition eta_from_alg {X : EndC} (T : algebra_ob (Const_plus_H X)) : EndC ⟦ X , `T ⟧. Proof. exact (tau1_from_alg CPEndC (constant_functor _ _ X) H T). Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | eta_from_alg | 38,305 |
Definition ptd_from_alg (T : algebra_ob Id_H) : Ptd. Proof. exists (pr1 T). exact (η T). Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | ptd_from_alg | 38,306 |
Definition tau_from_alg {X : EndC} (T : algebra_ob (Const_plus_H X)) : EndC ⟦H `T, `T⟧. Proof. exact (tau2_from_alg CPEndC (constant_functor _ _ X) H T). Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | tau_from_alg | 38,307 |
Definition bracket_property (T : algebra_ob Id_H) (f : U Z --> `T) (h : `T • (U Z) --> `T) : UU := alg_map _ T •• (U Z) · h = (identity (U Z) ⊕ θ `T) · (identity (U Z) ⊕ #H h) · (BinCoproductArrow (CPEndC _ _ ) f (tau_from_alg T)). | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | bracket_property | 38,308 |
Definition bracket_at (T : algebra_ob Id_H) (f : U Z --> `T): UU := ∃! h : `T • (U Z) --> `T, bracket_property T f h. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | bracket_at | 38,309 |
Definition bracket_property_parts (T : algebra_ob Id_H) (f : U Z --> `T) (h : `T • (U Z) --> `T) : UU := (f = η T •• (U Z) · h) × (θ `T · #H h · τ T = τ T •• (U Z) · h). | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | bracket_property_parts | 38,310 |
Definition bracket_parts_at (T : algebra_ob Id_H) (f : U Z --> `T) : UU := ∃! h : `T • (U Z) --> `T, bracket_property_parts T f h. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | bracket_parts_at | 38,311 |
Lemma parts_from_whole (T : algebra_ob Id_H) (f : U Z --> `T) (h : `T • (U Z) --> `T) : bracket_property T f h → bracket_property_parts T f h. Proof. intro Hyp. split. + unfold eta_from_alg. apply nat_trans_eq_alt. intro c. simpl. unfold coproduct_nat_trans_in1_data. assert (Hyp_inst := nat_trans_eq_pointwise Hyp c); clear Hyp. apply (maponpaths (λ m, BinCoproductIn1 (CP _ _)· m)) in Hyp_inst. match goal with |[ H1 : _ = ?f |- _ = _ ] => intermediate_path (f) end. * clear Hyp_inst. rewrite <- assoc. apply BinCoproductIn1Commutes_right_in_ctx_dir. rewrite id_left. apply BinCoproductIn1Commutes_right_in_ctx_dir. rewrite id_left. apply BinCoproductIn1Commutes_right_dir. apply idpath. * rewrite <- Hyp_inst; clear Hyp_inst. rewrite <- assoc. apply idpath. + unfold tau_from_alg. apply nat_trans_eq_alt. intro c. simpl. unfold coproduct_nat_trans_in2_data. assert (Hyp_inst := nat_trans_eq_pointwise Hyp c); clear Hyp. apply (maponpaths (λ m, BinCoproductIn2 (CP _ _)· m)) in Hyp_inst. match goal with |[ H1 : _ = ?f |- _ = _ ] => intermediate_path (f) end. * clear Hyp_inst. do 2 rewrite <- assoc. apply BinCoproductIn2Commutes_right_in_ctx_dir. simpl. rewrite <- assoc. apply maponpaths. apply BinCoproductIn2Commutes_right_in_ctx_dir. simpl. rewrite <- assoc. apply maponpaths. unfold tau_from_alg. apply BinCoproductIn2Commutes_right_dir. apply idpath. * rewrite <- Hyp_inst; clear Hyp_inst. rewrite <- assoc. apply idpath. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | parts_from_whole | 38,312 |
Lemma whole_from_parts (T : algebra_ob Id_H) (f : U Z --> `T) (h : `T • (U Z) --> `T) : bracket_property_parts T f h → bracket_property T f h. Proof. intros [Hyp1 Hyp2]. apply nat_trans_eq_alt. intro c. apply BinCoproductArrow_eq_cor. + clear Hyp2. assert (Hyp1_inst := nat_trans_eq_pointwise Hyp1 c); clear Hyp1. rewrite <- assoc. apply BinCoproductIn1Commutes_right_in_ctx_dir. rewrite id_left. apply BinCoproductIn1Commutes_right_in_ctx_dir. rewrite id_left. apply BinCoproductIn1Commutes_right_dir. simpl. simpl in Hyp1_inst. rewrite Hyp1_inst. simpl. apply assoc. + clear Hyp1. assert (Hyp2_inst := nat_trans_eq_pointwise Hyp2 c); clear Hyp2. rewrite <- assoc. apply BinCoproductIn2Commutes_right_in_ctx_dir. simpl. rewrite assoc. eapply pathscomp0. * eapply pathsinv0. exact Hyp2_inst. * clear Hyp2_inst. simpl. do 2 rewrite <- assoc. apply maponpaths. apply BinCoproductIn2Commutes_right_in_ctx_dir. simpl. rewrite <- assoc. apply maponpaths. apply BinCoproductIn2Commutes_right_dir. apply idpath. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | whole_from_parts | 38,313 |
Definition bracket_property_parts_identity_nicer (h : `T • `T --> `T) : UU := (identity `T = η T •• `T · h) × (θ `T · #H h · τ T = τ T •• `T · h). | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | bracket_property_parts_identity_nicer | 38,314 |
Lemma bracket_property_parts_identity_nicer_impl1 (h : `T • `T --> `T): bracket_property_parts θ T (identity _) h -> bracket_property_parts_identity_nicer h. Proof. intro Hyp. induction Hyp as [Hyp1 Hyp2]. split. - etrans. 2: { exact Hyp1. } apply nat_trans_eq_alt. intro c. apply idpath. - etrans. { exact Hyp2. } apply idpath. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | bracket_property_parts_identity_nicer_impl1 | 38,315 |
Lemma bracket_property_parts_identity_nicer_impl2 (h : `T • `T --> `T): bracket_property_parts_identity_nicer h -> bracket_property_parts θ T (identity _) h. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | bracket_property_parts_identity_nicer_impl2 | 38,316 |
Definition heterogeneous_substitution : UU := ∑ (T: algebra_ob Id_H), ∑ (θ : @PrestrengthForSignatureAtPoint C C C H (ptd_from_alg T)), bracket_at θ T (identity _). | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | heterogeneous_substitution | 38,317 |
Definition θ_from_hetsubst (T : heterogeneous_substitution) : @PrestrengthForSignatureAtPoint C C C H (ptd_from_alg T) := pr1 (pr2 T). | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | θ_from_hetsubst | 38,318 |
Definition prejoin_from_hetsubst (T : heterogeneous_substitution) : `T • `T --> `T := pr1 (pr1 (pr2 (pr2 T))). | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | prejoin_from_hetsubst | 38,319 |
Lemma prejoin_from_hetsubst_η (T : heterogeneous_substitution) : identity `T = η T •• `T · (prejoin_from_hetsubst T). Proof. refine (pr1 (bracket_property_parts_identity_nicer_impl1 T (θ_from_hetsubst T) _ _)). apply parts_from_whole. exact (pr2 (pr1 (pr2 (pr2 T)))). Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | prejoin_from_hetsubst_η | 38,320 |
Lemma prejoin_from_hetsubst_τ (T : heterogeneous_substitution) : θ_from_hetsubst T `T · #H (prejoin_from_hetsubst T) · τ T = τ T •• `T · (prejoin_from_hetsubst T). Proof. refine (pr2 (bracket_property_parts_identity_nicer_impl1 T (θ_from_hetsubst T) _ _)). apply parts_from_whole. exact (pr2 (pr1 (pr2 (pr2 T)))). Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | prejoin_from_hetsubst_τ | 38,321 |
Definition bracket (T : algebra_ob Id_H) : UU := ∏ (Z : Ptd) (f : U Z --> `T), bracket_at (nat_trans_fix_snd_arg _ _ _ _ _ θ Z) T f. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | bracket | 38,322 |
Lemma isaprop_bracket (T : algebra_ob Id_H) : isaprop (bracket T). Proof. apply impred_isaprop; intro Z. apply impred_isaprop; intro f. apply isapropiscontr. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | isaprop_bracket | 38,323 |
Definition bracket_parts (T : algebra_ob Id_H) : UU := ∏ (Z : Ptd) (f : U Z --> `T), bracket_parts_at (nat_trans_fix_snd_arg _ _ _ _ _ θ Z) T f. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | bracket_parts | 38,324 |
Definition hss : UU := ∑ (T: algebra_ob Id_H), bracket H θ T. Coercion hetsubst_from_hss (T : hss) : heterogeneous_substitution H. Proof. exists (pr1 T). use tpair. - apply (nat_trans_fix_snd_arg _ _ _ _ _ θ). - apply (pr2 T). Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | hss | 38,325 |
Definition fbracket (T : hss) (Z : Ptd) (f : U Z --> `T) : `T • (U Z) --> `T := pr1 (pr1 (pr2 T Z f)). | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | fbracket | 38,326 |
Definition fbracket_unique_pointwise (T : hss) {Z : Ptd} (f : U Z --> `T) : ∏ (α : functor_composite (U Z) `T ⟹ pr1 `T), (∏ c : C, pr1 f c = pr1 (η T) (pr1 (U Z) c) · α c) → (∏ c : C, pr1 (θ (`T ⊗ Z)) c · pr1 (#H α) c · pr1 (τ T) c = pr1 (τ T) (pr1 (U Z) c) · α c) → α = ⦃f⦄_{Z}. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | fbracket_unique_pointwise | 38,327 |
Definition fbracket_unique (T : hss) {Z : Ptd} (f : U Z --> `T) : ∏ α : `T • (U Z) --> `T, bracket_property_parts H (nat_trans_fix_snd_arg _ _ _ _ _ θ Z) T f α → α = ⦃f⦄_{Z}. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | fbracket_unique | 38,328 |
Definition fbracket_unique_target_pointwise (T : hss) {Z : Ptd} (f : U Z --> `T) : ∏ α : `T • U Z --> `T, bracket_property_parts H (nat_trans_fix_snd_arg _ _ _ _ _ θ Z) T f α → ∏ c, pr1 α c = pr1 ⦃f⦄_{Z} c. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | fbracket_unique_target_pointwise | 38,329 |
Lemma fbracket_η (T : hss) : ∏ {Z : Ptd} (f : U Z --> `T), f = η T •• U Z · ⦃f⦄_{Z}. Proof. intros Z f. exact (pr1 (parts_from_whole _ _ _ _ _ (pr2 (pr1 (pr2 T Z f))))). Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | fbracket_η | 38,330 |
Lemma fbracket_τ (T : hss) : ∏ {Z : Ptd} (f : U Z --> `T), θ (`T ⊗ Z) · #H ⦃f⦄_{Z} · τ T = τ T •• U Z · ⦃f⦄_{Z}. Proof. intros Z f. exact (pr2 (parts_from_whole _ _ _ _ _ (pr2 (pr1 (pr2 T Z f))))). Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | fbracket_τ | 38,331 |
Lemma fbracket_natural (T : hss) {Z Z' : Ptd} (f : Z --> Z') (g : U Z' --> `T) : (`T ∘ #U f : EndC⟦ `T • U Z , `T • U Z' ⟧) · ⦃g⦄_{Z'} = ⦃#U f · g⦄_{Z}. Proof. apply fbracket_unique_pointwise. - simpl. intro c. rewrite assoc. pose proof (nat_trans_ax (η T)) as H'. simpl in H'. rewrite <- H'; clear H'. rewrite <- assoc. apply maponpaths. pose proof (nat_trans_eq_weq (homset_property C) _ _ (fbracket_η T g)) as X. simpl in X. exact (X _ ). - intro c; simpl. assert (H':=nat_trans_ax (τ T)). simpl in H'. eapply pathscomp0. 2: apply assoc'. eapply pathscomp0. 2: { apply cancel_postcomposition. apply H'. } clear H'. set (H':=fbracket_τ T g). simpl in H'. assert (X:= nat_trans_eq_pointwise H' c). simpl in X. rewrite <- assoc. rewrite <- assoc. transitivity ( # (pr1 (H ((`T)))) (pr1 f c) · (pr1 (θ ((`T) ⊗ Z')) c)· pr1 (# H ⦃g⦄_{Z'}) c· pr1 (τ T) c). 2: { rewrite <- assoc. rewrite <- assoc. apply maponpaths. repeat rewrite assoc. apply X. } clear X. set (A:=θ_nat_2_pointwise). simpl in *. set (A':= A C C C H θ (`T) Z Z'). simpl in A'. set (A2:= A' f). clearbody A2; clear A'; clear A. rewrite A2; clear A2. repeat rewrite <- assoc. apply maponpaths. simpl. repeat rewrite assoc. apply cancel_postcomposition. rewrite (functor_comp H). apply cancel_postcomposition. clear H'. set (A:=horcomp_id_postwhisker C C C). rewrite A; try apply homset_property. apply idpath. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | fbracket_natural | 38,332 |
Lemma compute_fbracket (T : hss) : ∏ {Z : Ptd} (f : Z --> ptd_from_alg T), ⦃#U f⦄_{Z} = (`T ∘ # U f : EndC⟦`T • U Z , `T • U (ptd_from_alg T)⟧) · ⦃identity (U (ptd_from_alg T))⦄_{ptd_from_alg T}. Proof. intros Z f. assert (A : f = f · identity _ ). { rewrite id_right; apply idpath. } rewrite A. rewrite functor_comp. rewrite <- fbracket_natural. rewrite id_right. apply idpath. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | compute_fbracket | 38,333 |
Lemma heterogeneous_substitution_into_bracket {Z : Ptd} (f : Z --> ptd_from_alg T0) : bracket_property H (nat_trans_fix_snd_arg _ _ _ _ _ θ Z) T0 (#U f) ((` T0 ∘ #U f : EndC ⟦ `T0 • U Z , `T0 • U (ptd_from_alg T0) ⟧) · prejoin_from_hetsubst T0). Proof. apply whole_from_parts. split. - apply nat_trans_eq_alt. intro c. induction f as [f pt]. simpl. assert (alg_map_nat := nat_trans_ax (alg_map Id_H T0) _ _ (pr1 f c)). etrans. 2: { rewrite <- assoc. apply maponpaths. rewrite assoc. apply cancel_postcomposition. exact alg_map_nat. } clear alg_map_nat. etrans. 2: { do 2 rewrite assoc. do 2 apply cancel_postcomposition. apply pathsinv0. unfold Id_H. simpl. apply BinCoproductIn1Commutes. } simpl. etrans. { apply pathsinv0. apply id_right. } do 2 rewrite <- assoc. apply maponpaths. rewrite assoc. assert (prejoin_ok := prejoin_from_hetsubst_η T0). apply (maponpaths pr1) in prejoin_ok. apply toforallpaths in prejoin_ok. apply prejoin_ok. - rewrite functor_comp. apply nat_trans_eq_alt. intro c. induction f as [f pt]. simpl. assert (alg_map_nat := nat_trans_ax (alg_map Id_H T0) _ _ (pr1 f c)). etrans. 2: { rewrite <- assoc. apply maponpaths. rewrite assoc. apply cancel_postcomposition. exact alg_map_nat. } etrans. 2: { do 2 rewrite assoc. do 2 apply cancel_postcomposition. apply pathsinv0. unfold Id_H. simpl. apply BinCoproductIn2Commutes. } assert (prejoin_ok := prejoin_from_hetsubst_τ T0). apply (maponpaths pr1) in prejoin_ok. apply toforallpaths in prejoin_ok. assert (prejoin_ok_inst := prejoin_ok c). simpl in prejoin_ok_inst. etrans. { repeat rewrite assoc. do 3 apply cancel_postcomposition. apply pathsinv0. assert (theta_nat_2 := θ_nat_2_pointwise _ _ _ H θ `T0 _ _ (f,,pt) c). rewrite horcomp_id_postwhisker in theta_nat_2; try apply homset_property. apply theta_nat_2. } etrans. { repeat rewrite <- assoc. apply maponpaths. rewrite assoc. exact prejoin_ok_inst. } clear prejoin_ok prejoin_ok_inst. repeat rewrite assoc. apply idpath. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | heterogeneous_substitution_into_bracket | 38,334 |
Definition isAlgMor {T T' : Alg} (f : T --> T') : UU := #H (# U f) · τ T' = compose (C:=EndC) (τ T) (#U f). | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | isAlgMor | 38,335 |
Lemma isaprop_isAlgMor (T T' : Alg) (f : T --> T') : isaprop (isAlgMor f). Proof. apply isaset_nat_trans. apply hs. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | isaprop_isAlgMor | 38,336 |
Lemma τ_part_of_alg_mor (T T' : @algebra_ob [C, C] Id_H) (β : @algebra_mor [C, C] Id_H T T'): #H β · τ T' = compose (C:=EndC) (τ T) β. Proof. assert (β_is_alg_mor := pr2 β). simpl in β_is_alg_mor. assert (β_is_alg_mor_inst := maponpaths (fun m:EndC⟦_,_⟧ => (BinCoproductIn2 (CPEndC _ _))· m) β_is_alg_mor); clear β_is_alg_mor. simpl in β_is_alg_mor_inst. apply nat_trans_eq_alt. intro c. assert (β_is_alg_mor_inst':= nat_trans_eq_pointwise β_is_alg_mor_inst c); clear β_is_alg_mor_inst. simpl in β_is_alg_mor_inst'. rewrite assoc in β_is_alg_mor_inst'. eapply pathscomp0. 2: { eapply pathsinv0. exact β_is_alg_mor_inst'. } clear β_is_alg_mor_inst'. apply BinCoproductIn2Commutes_right_in_ctx_dir. simpl. rewrite <- assoc. apply idpath. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | τ_part_of_alg_mor | 38,337 |
Lemma is_ptd_mor_alg_mor (T T' : @algebra_ob [C, C] Id_H) (β : @algebra_mor [C, C] Id_H T T') : @is_ptd_mor C (ptd_from_alg T) (ptd_from_alg T') (pr1 β). Proof. simpl. unfold is_ptd_mor. simpl. intro c. rewrite <- assoc. assert (X:=pr2 β). assert (X':= nat_trans_eq_pointwise X c). simpl in *. etrans. { apply maponpaths. apply X'. } unfold coproduct_nat_trans_in1_data. repeat rewrite assoc. unfold coproduct_nat_trans_data. etrans. { apply cancel_postcomposition. apply BinCoproductIn1Commutes. } simpl. repeat rewrite <- assoc. apply id_left. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | is_ptd_mor_alg_mor | 38,338 |
Definition ptd_from_alg_mor {T T' : algebra_ob Id_H} (β : algebra_mor _ T T') : ptd_from_alg T --> ptd_from_alg T'. Proof. exists (pr1 β). apply is_ptd_mor_alg_mor. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | ptd_from_alg_mor | 38,339 |
Definition ptd_from_alg_functor_data : functor_data (category_FunctorAlg Id_H) Ptd. Proof. exists ptd_from_alg. intros T T' β. apply ptd_from_alg_mor. exact β. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | ptd_from_alg_functor_data | 38,340 |
Lemma is_functor_ptd_from_alg_functor_data : is_functor ptd_from_alg_functor_data. Proof. split; simpl; intros. + unfold functor_idax. intro T. apply (invmap (eq_ptd_mor_cat _ _ _)). apply (invmap (eq_ptd_mor _ _)). apply idpath. + unfold functor_compax. intros T T' T'' β β'. apply (invmap (eq_ptd_mor_cat _ _ _)). apply (invmap (eq_ptd_mor _ _)). apply idpath. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | is_functor_ptd_from_alg_functor_data | 38,341 |
Definition ptd_from_alg_functor: functor (category_FunctorAlg Id_H) Ptd := tpair _ _ is_functor_ptd_from_alg_functor_data. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | ptd_from_alg_functor | 38,342 |
Definition isbracketMor {T T' : hss} (β : algebra_mor _ T T') : UU := ∏ (Z : Ptd) (f : U Z --> `T), ⦃f⦄_{Z} · β = β •• U Z · ⦃f · #U (# ptd_from_alg_functor β)⦄_{Z}. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | isbracketMor | 38,343 |
Lemma isaprop_isbracketMor (T T' : hss) (β : algebra_mor _ T T') : isaprop (isbracketMor β). Proof. do 2 (apply impred; intro). apply isaset_nat_trans. apply homset_property. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | isaprop_isbracketMor | 38,344 |
Definition ishssMor {T T' : hss} (β : algebra_mor _ T T') : UU := isbracketMor β. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | ishssMor | 38,345 |
Definition hssMor (T T' : hss) : UU := ∑ β : algebra_mor _ T T', ishssMor β. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | hssMor | 38,346 |
Definition isAlgMor_hssMor {T T' : hss} (β : hssMor T T') : isAlgMor β := pr1 (pr2 β). | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | isAlgMor_hssMor | 38,347 |
Definition isbracketMor_hssMor {T T' : hss} (β : hssMor T T') : isbracketMor β := pr2 β. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | isbracketMor_hssMor | 38,348 |
Definition hssMor_eq1 : β = β' ≃ (pr1 β = pr1 β'). Proof. apply subtypeInjectivity. intro γ. apply isaprop_isbracketMor. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | hssMor_eq1 | 38,349 |
Definition hssMor_eq : β = β' ≃ (β : EndC ⟦ _ , _ ⟧) = β'. Proof. eapply weqcomp. - apply hssMor_eq1. - apply subtypeInjectivity. intro. apply isaset_nat_trans. apply homset_property. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | hssMor_eq | 38,350 |
Lemma isaset_hssMor (T T' : hss) : isaset (hssMor T T'). Proof. intros β β'. apply (isofhlevelweqb _ (hssMor_eq _ _ β β')). apply isaset_nat_trans. apply homset_property. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | isaset_hssMor | 38,351 |
Lemma ishssMor_id (T : hss) : ishssMor (identity (C:=category_FunctorAlg _) (pr1 T)). Proof. unfold ishssMor. unfold isbracketMor. intros Z f. rewrite id_right. rewrite functor_id. rewrite id_right. apply pathsinv0. set (H2:=pre_composition_functor _ _ C (U Z)). set (H2' := functor_id H2). simpl in H2'. simpl. rewrite H2'. rewrite (@id_left EndC). apply idpath. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | ishssMor_id | 38,352 |
Definition hssMor_id (T : hss) : hssMor _ _ := tpair _ _ (ishssMor_id T). | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | hssMor_id | 38,353 |
Lemma ishssMor_comp {T T' T'' : hss} (β : hssMor T T') (γ : hssMor T' T'') : ishssMor (compose (C:=category_FunctorAlg _) (pr1 β) (pr1 γ)). Proof. unfold ishssMor. unfold isbracketMor. intros Z f. eapply pathscomp0; [apply assoc|]. etrans. { apply cancel_postcomposition. apply isbracketMor_hssMor. } rewrite <- assoc. etrans. { apply maponpaths. apply isbracketMor_hssMor. } rewrite assoc. do 2 rewrite functor_comp. rewrite assoc. apply cancel_postcomposition. apply pathsinv0, (functor_comp (pre_composition_functor _ _ C (U Z)) ). Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | ishssMor_comp | 38,354 |
Definition hssMor_comp {T T' T'' : hss} (β : hssMor T T') (γ : hssMor T' T'') : hssMor T T'' := tpair _ _ (ishssMor_comp β γ). | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | hssMor_comp | 38,355 |
Definition hss_obmor : precategory_ob_mor. Proof. exists hss. exact hssMor. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | hss_obmor | 38,356 |
Definition hss_precategory_data : precategory_data. Proof. exists hss_obmor. split. - exact hssMor_id. - exact @hssMor_comp. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | hss_precategory_data | 38,357 |
Lemma is_precategory_hss : is_precategory hss_precategory_data. Proof. apply is_precategory_one_assoc_to_two. repeat split; intros. - apply (invmap (hssMor_eq _ _ _ _ )). apply (@id_left EndC). - apply (invmap (hssMor_eq _ _ _ _ )). apply (@id_right EndC). - apply (invmap (hssMor_eq _ _ _ _ )). apply (@assoc EndC). Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | is_precategory_hss | 38,358 |
Definition hss_precategory : precategory := tpair _ _ is_precategory_hss. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | hss_precategory | 38,359 |
Lemma has_homsets_precategory_hss : has_homsets hss_precategory. Proof. red. intros T T'. apply isaset_hssMor. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | has_homsets_precategory_hss | 38,360 |
Definition hss_category : category := hss_precategory ,, has_homsets_precategory_hss. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems.v | hss_category | 38,361 |
Definition GenMendlerIteration : ∏ (C : category) (F : functor C C) (μF_Initial : Initial (FunctorAlg F)) (C' : category) (X : C') (L : functor C C'), is_left_adjoint L → ∏ ψ : ψ_source C C' X L ⟹ ψ_target C F C' X L, ∃! h : C' ⟦ L ` (InitialObject μF_Initial), X ⟧, # L (alg_map F (InitialObject μF_Initial)) · h = ψ ` (InitialObject μF_Initial) h. Proof. simpl. apply GenMendlerIteration. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | GenMendlerIteration | 38,362 |
Theorem fusion_law : ∏ (C : category) (F : functor C C) (μF_Initial : Initial (category_FunctorAlg F)) (C' : category) (X X' : C') (L : functor C C') (is_left_adj_L : is_left_adjoint L) (ψ : ψ_source C C' X L ⟹ ψ_target C F C' X L) (L' : functor C C') (is_left_adj_L' : is_left_adjoint L') (ψ' : ψ_source C C' X' L' ⟹ ψ_target C F C' X' L') (Φ : yoneda_objects C' X • functor_opp L ⟹ yoneda_objects C' X' • functor_opp L'), let T:= (` (InitialObject μF_Initial)) in ψ T · Φ (F T) = Φ T · ψ' T → Φ T (It μF_Initial X L is_left_adj_L ψ) = It μF_Initial X' L' is_left_adj_L' ψ'. Proof. apply fusion_law. Qed. | Theorem | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | fusion_law | 38,363 |
Lemma fbracket_natural : ∏ (C : category) (CP : BinCoproducts C) (H : Presignature C C C) (T : hss CP H) (Z Z' : category_Ptd C) (f : category_Ptd C ⟦ Z, Z' ⟧) (g : [C,C] ⟦ U Z', `T ⟧), (`T ∘ # U f : [C, C] ⟦ `T • U Z , `T • U Z' ⟧) · ⦃g⦄_{Z'} = ⦃#U f · g⦄_{Z} . Proof. apply fbracket_natural. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | fbracket_natural | 38,364 |
Lemma compute_fbracket : ∏ (C : category) (CP : BinCoproducts C) (H : Presignature C C C) (T : hss CP H) (Z : category_Ptd C) (f : category_Ptd C ⟦ Z, ptd_from_alg T ⟧), ⦃#U f⦄_{Z} = (`T ∘ # U f : [C, C] ⟦ `T • U Z , `T • U _ ⟧) · ⦃ identity (U (ptd_from_alg T)) ⦄_{ptd_from_alg T}. Proof. apply compute_fbracket. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | compute_fbracket | 38,365 |
Definition Monad_from_hss : ∏ (C : category) (CP : BinCoproducts C) (H : Signature C C C), hss CP H → Monad C. Proof. apply Monad_from_hss. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | Monad_from_hss | 38,366 |
Definition hss_to_monad_functor : ∏ (C : category) (CP : BinCoproducts C) (H : Signature C C C), functor (hss_precategory CP H) (category_Monad C). Proof. apply hss_to_monad_functor. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | hss_to_monad_functor | 38,367 |
Lemma faithful_hss_to_monad : ∏ (C : category) (CP : BinCoproducts C) (H : Signature C C C), faithful (hss_to_monad_functor C CP H). Proof. apply faithful_hss_to_monad. Defined. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | faithful_hss_to_monad | 38,368 |
Definition bracket_for_initial_algebra : ∏ (C : category) (CP : BinCoproducts C), (∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) → ∏ (H : Presignature C C C) (IA : Initial (FunctorAlg (Id_H C CP H))) (Z : category_Ptd C), [C, C] ⟦ U Z, U (ptd_from_alg (InitAlg C CP H IA)) ⟧ → [C, C] ⟦ ℓ (U Z) ` (InitialObject IA), ` (InitAlg C CP H IA) ⟧. Proof. apply bracket_Thm15. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | bracket_for_initial_algebra | 38,369 |
Lemma bracket_Thm15_ok_η : ∏ (C : category) (CP : BinCoproducts C) (KanExt : ∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) (H : Presignature C C C) (IA : Initial (FunctorAlg (Id_H C CP H))) (Z : category_Ptd C) (f : [C,C] ⟦ U Z, U (ptd_from_alg (InitAlg C CP H IA))⟧), f = # (pr1 (ℓ (U Z))) (η (InitAlg C CP H IA)) · bracket_Thm15 C CP KanExt H IA Z f. Proof. apply bracket_Thm15_ok_part1. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | bracket_Thm15_ok_η | 38,370 |
Lemma bracket_Thm15_ok_τ : ∏ (C : category) (CP : BinCoproducts C) (KanExt : ∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) (H : Presignature C C C) (IA : Initial (FunctorAlg (Id_H C CP H))) (Z : category_Ptd C) (f : [C,C] ⟦ U Z, U (ptd_from_alg (InitAlg C CP H IA)) ⟧), (theta H) (` (InitAlg C CP H IA) ⊗ Z) · # H (bracket_Thm15 C CP KanExt H IA Z f) · τ (InitAlg C CP H IA) = # (pr1 (ℓ (U Z))) (τ (InitAlg C CP H IA)) · bracket_Thm15 C CP KanExt H IA Z f. Proof. apply bracket_Thm15_ok_part2. Qed. | Lemma | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | bracket_Thm15_ok_τ | 38,371 |
Definition Initial_HSS : ∏ (C : category) (CP : BinCoproducts C), (∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) → ∏ H : Presignature C C C, Initial (FunctorAlg (Id_H C CP H)) → Initial (hss_category CP H). Proof. apply InitialHSS. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | Initial_HSS | 38,372 |
Definition Sum_of_Signatures : ∏ (C D D': category), BinCoproducts D → Signature C D D' → Signature C D D' → Signature C D D'. Proof. apply BinSum_of_Signatures. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | Sum_of_Signatures | 38,373 |
Definition App_Sig : ∏ (C : category), BinProducts C → Signature C C C. Proof. apply App_Sig. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | App_Sig | 38,374 |
Definition Lam_Sig : ∏ (C : category), Terminal C → BinCoproducts C → BinProducts C → Signature C C C. Proof. apply Lam_Sig. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | Lam_Sig | 38,375 |
Definition Flat_Sig : ∏ (C : category), Signature C C C. Proof. apply Flat_Sig. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | Flat_Sig | 38,376 |
Definition Lam_Flatten : ∏ (C : category) (terminal : Terminal C) (CC : BinCoproducts C) (CP : BinProducts C), (∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) → ∏ Lam_Initial : Initial (FunctorAlg (Id_H C CC (Lam_Sig C terminal CC CP))), [C, C] ⟦ (Flat_H C) ` (InitialObject Lam_Initial), ` (InitialObject Lam_Initial) ⟧. Proof. apply Lam_Flatten. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | Lam_Flatten | 38,377 |
Definition fbracket_for_LamE_algebra_on_Lam : ∏ (C : category) (terminal : Terminal C) (CC : BinCoproducts C) (CP : BinProducts C) (KanExt : ∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) (Lam_Initial : Initial (FunctorAlg (Id_H C CC (Lam_Sig C terminal CC CP)))) (Z : category_Ptd C), category_Ptd C ⟦ Z , (ptd_from_alg_functor CC (LamE_Sig C terminal CC CP)) (LamE_algebra_on_Lam C terminal CC CP KanExt Lam_Initial) ⟧ → [C, C] ⟦ functor_composite (U Z) ` (LamE_algebra_on_Lam C terminal CC CP KanExt Lam_Initial), ` (LamE_algebra_on_Lam C terminal CC CP KanExt Lam_Initial) ⟧. Proof. apply fbracket_for_LamE_algebra_on_Lam. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | fbracket_for_LamE_algebra_on_Lam | 38,378 |
Definition EVAL : ∏ (C : category) (terminal : Terminal C) (CC : BinCoproducts C) (CP : BinProducts C) (KanExt : ∏ Z : category_Ptd C, GlobalRightKanExtensionExists C C (U Z) C) (Lam_Initial : Initial (FunctorAlg (Id_H C CC (LamSignature.Lam_Sig C terminal CC CP)))) (LamE_Initial : Initial (FunctorAlg (Id_H C CC (LamE_Sig C terminal CC CP)))), hss_category CC (LamE_Sig C terminal CC CP) ⟦ InitialObject (LamEHSS_Initial C terminal CC CP KanExt LamE_Initial), LamE_model_on_Lam C terminal CC CP KanExt Lam_Initial ⟧. Proof. apply FLATTEN. Defined. | Definition | SubstitutionSystems | Require Import UniMath.Foundations.PartD. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Core.Functors. Require Import UniMath.CategoryTheory.Core.NaturalTransformations. Require Import UniMath.CategoryTheory.Adjunctions.Core. Require Import UniMath.CategoryTheory.FunctorCategory. Require Import UniMath.CategoryTheory.whiskering. Require Import UniMath.CategoryTheory.Monads.Monads. Require Import UniMath.CategoryTheory.Limits.BinProducts. Require Import UniMath.CategoryTheory.Limits.BinCoproducts. Require Import UniMath.CategoryTheory.Limits.Initial. Require Import UniMath.CategoryTheory.Limits.Terminal. Require Import UniMath.CategoryTheory.FunctorAlgebras. Require Import UniMath.CategoryTheory.opp_precat. Require Import UniMath.CategoryTheory.yoneda. Require Import UniMath.CategoryTheory.PointedFunctors. Require Import UniMath.CategoryTheory.PrecategoryBinProduct. Require Import UniMath.CategoryTheory.HorizontalComposition. Require Import UniMath.CategoryTheory.PointedFunctorsComposition. Require Import UniMath.SubstitutionSystems.Signatures. Require Import UniMath.SubstitutionSystems.BinSumOfSignatures. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.CategoryTheory.RightKanExtension. Require Import UniMath.SubstitutionSystems.GenMendlerIteration. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.LiftingInitial. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.MonadsFromSubstitutionSystems. Require Import UniMath.SubstitutionSystems.LamSignature. Require Import UniMath.SubstitutionSystems.SimplifiedHSS.Lam. Require Import UniMath.SubstitutionSystems.Notation. | SubstitutionSystems\SimplifiedHSS\SubstitutionSystems_Summary.v | EVAL | 38,379 |
Definition top_disp_cat_ob_mor : disp_cat_ob_mor hset_category. Proof. use make_disp_cat_ob_mor. - intro X. exact (isTopologicalSpace X). - intros X Y T U f. exact (@continuous (X,,T) (Y,,U) f). Defined. | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.Topology.Topology. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Categories.HSET.Core. Require Import UniMath.CategoryTheory.DisplayedCats.Core. | Topology\CategoryTop.v | top_disp_cat_ob_mor | 38,380 |
Definition top_disp_cat_data : disp_cat_data hset_category. Proof. exists top_disp_cat_ob_mor. split. - do 5 intro. assumption. - intros *. apply continuous_funcomp. Defined. | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.Topology.Topology. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Categories.HSET.Core. Require Import UniMath.CategoryTheory.DisplayedCats.Core. | Topology\CategoryTop.v | top_disp_cat_data | 38,381 |
Definition top_disp_cat_axioms : disp_cat_axioms hset_category top_disp_cat_data. Proof. do 3 (split ; intros ; try (apply proofirrelevance, isaprop_continuous)). apply isasetaprop, isaprop_continuous. Defined. | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.Topology.Topology. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Categories.HSET.Core. Require Import UniMath.CategoryTheory.DisplayedCats.Core. | Topology\CategoryTop.v | top_disp_cat_axioms | 38,382 |
Definition disp_top : disp_cat hset_category := _ ,, top_disp_cat_axioms. | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.Algebra.DivisionRig. Require Import UniMath.Algebra.ConstructiveStructures. Require Import UniMath.Topology.Topology. Require Import UniMath.CategoryTheory.Core.Categories. Require Import UniMath.CategoryTheory.Categories.HSET.Core. Require Import UniMath.CategoryTheory.DisplayedCats.Core. | Topology\CategoryTop.v | disp_top | 38,383 |
Definition isfilter_imply := ∏ A B : X → hProp, (∏ x : X, A x → B x) → F A → F B. | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | isfilter_imply | 38,384 |
Lemma isaprop_isfilter_imply : isaprop isfilter_imply. Proof. apply impred_isaprop ; intro A. apply impred_isaprop ; intro B. apply isapropimpl. apply isapropimpl. apply propproperty. Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | isaprop_isfilter_imply | 38,385 |
Definition isfilter_finite_intersection := ∏ (L : Sequence (X → hProp)), (∏ n, F (L n)) → F (finite_intersection L). | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | isfilter_finite_intersection | 38,386 |
Lemma isaprop_isfilter_finite_intersection : isaprop isfilter_finite_intersection. Proof. apply impred_isaprop ; intros L. apply isapropimpl. apply propproperty. Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | isaprop_isfilter_finite_intersection | 38,387 |
Definition isfilter_htrue : hProp := F (λ _ : X, htrue). | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | isfilter_htrue | 38,388 |
Definition isfilter_and := ∏ A B : X → hProp, F A → F B → F (λ x : X, A x ∧ B x). | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | isfilter_and | 38,389 |
Lemma isaprop_isfilter_and : isaprop isfilter_and. Proof. apply impred_isaprop ; intro A. apply impred_isaprop ; intro B. apply isapropimpl. apply isapropimpl. apply propproperty. Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | isaprop_isfilter_and | 38,390 |
Definition isfilter_notempty := ∏ A : X → hProp, F A → ∃ x : X, A x. | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | isfilter_notempty | 38,391 |
Lemma isaprop_isfilter_notempty : isaprop isfilter_notempty. Proof. apply impred_isaprop ; intro A. apply isapropimpl. apply propproperty. Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | isaprop_isfilter_notempty | 38,392 |
Lemma isfilter_finite_intersection_htrue : isfilter_finite_intersection → isfilter_htrue. Proof. intros Hand. unfold isfilter_htrue. rewrite <- finite_intersection_htrue. apply Hand. intros m. apply fromempty. generalize (pr2 m). now apply negnatlthn0. Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | isfilter_finite_intersection_htrue | 38,393 |
Lemma isfilter_finite_intersection_and : isfilter_finite_intersection → isfilter_and. Proof. intros Hand A B Fa Fb. rewrite <- finite_intersection_and. apply Hand. intros m. induction m as [m Hm]. induction m as [ | m _]. - exact Fa. - exact Fb. Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | isfilter_finite_intersection_and | 38,394 |
Lemma isfilter_finite_intersection_carac : isfilter_htrue → isfilter_and → isfilter_finite_intersection. Proof. intros Htrue Hand L. apply (pr2 (finite_intersection_hProp F)). split. - exact Htrue. - exact Hand. Qed. | Lemma | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | isfilter_finite_intersection_carac | 38,395 |
Definition isPreFilter {X : UU} (F : (X → hProp) → hProp) := isfilter_imply F × isfilter_finite_intersection F. | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | isPreFilter | 38,396 |
Definition PreFilter (X : UU) := ∑ (F : (X → hProp) → hProp), isPreFilter F. | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | PreFilter | 38,397 |
Definition make_PreFilter {X : UU} (F : (X → hProp) → hProp) (Himpl : isfilter_imply F) (Htrue : isfilter_htrue F) (Hand : isfilter_and F) : PreFilter X := F,, Himpl,, isfilter_finite_intersection_carac F Htrue Hand. | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | make_PreFilter | 38,398 |
Definition pr1PreFilter (X : UU) (F : PreFilter X) : (X → hProp) → hProp := pr1 F. | Definition | Topology | Require Import UniMath.Foundations.Preamble. Require Import UniMath.MoreFoundations.Tactics. Require Import UniMath.MoreFoundations.PartA. | Topology\Filters.v | pr1PreFilter | 38,399 |