Datasets:

Modalities:
Audio
Text
Formats:
parquet
Languages:
Wolof
ArXiv:
Libraries:
Datasets
Dask
License:
audio
audioduration (s)
1.22
171
text
stringlengths
6
108
defarkatu mburu la.
may ma genn !
garab la gog, ñu ngi koy fekk mu yaatu lool ci tund afrig.
damay wër koor gu ndaw.
luy weesu la.
wota bi, daa am yàqu-yàqu.
lan ngay def nii ?
farañse laay wax.
maa ngi ziyaar sama sëriñ ak sama doomu baay .
ndax nit ñaa ngi leen di may nopp ?
ci àngale, mooy alabaster. ci faranse mooy albatre
amdi géy
móoris, republig bu móoris, réewu afrig
dinaa ñu
man nga maa indi ñu ci siiw ci àddina si ?
damaa yëg sama bopp.
jigéen ji daal di jël ndam li.
ndax dinaa mën a matale liggéey bii?
melow suuf ci jëmm, soppi
njandaam, day meññi ay foytéef.
gannaaw ba mu jàppee loolu lépp.
damaa xaw a sonn.
nanu noppalu fii.
kenn ñëwul woon.
ku jéemul, du am dara.
ab tóoy la.
iniwersite bu ndar, ëmb na juróorum-ñaari bërëbu tàggat ak gëstu
baaba moom sama lépp la
tomas adison it ñëw, indil ñu làmp bu mbëj.
nan ko defaat.
neex ab sëyeeful neex na ma.
dawalleen mbind mi.
sëriñ abdu xaadir mbàkke, moom ag ayam weesuwul 11 weer
ak ci fukk, ba ci ñaar-fukk i met, ci njoolaay
defar leen seen i yéere !
du lu jaaduwul.
maki, mu ngi woo waa àdduna bi ngir ñu janoo ak jafe-jafe yi.
damaa ragal a dee.
polotigi afrigu bëj-saalum.
xel mi dafa ñaaw.
janq yi dañoo dof.
dafa am lu mu ma jàppal.
bu sa bët jóg ci moom !
xalel foto-foto la noo ko raaxe rekk lay wéye
nanu ko defaat.
bàyyi leen seen yoxo yi !
duma nelaw mukk ci sama barabu liggéeyukaay.
xale dong la.
reer bi damaa rëcc
lekk gi daa sedd.
tom a ngi këram.
tom, dafa xamadi.
booy nàmpal sa doom, nanga fexe ba sa toogaay mbaa sa tëraay jekk
nettaliy xew-xewi cosaan
ndax ñoom doylu nan ?
yëgu ma dara.
dogal yi jëm ci santaaneb alikeñ yi ni ko takk-der yi déggee baaxul
doxalee na ak ug xereñ.
ndax man naa laa dimbali?
mës nañu koo dëne.
mi ngi noppi.
na nga xellu !
ni nuy gëme malaaka yi yal na yàlla dolli xeewal ak mucc ci ñoom
dañoo bëgg tom.
dama leen a neexal.
cari foytéefam day yàgg ak ñoom lool.
ñëwal soo ko mënee!?
dama leen yittewoo.
dëkkul ci dalu daara ju kawe ji.
ci lañu biral faatug george floyd
yéreem yi dañoo xotteeku woon.
leegi am naa tiis.
muhammadu raasin njaay
seeñi maam ñu bare ca xetu sooninke ak naar lañu juge.
di na dox lool ci moom.
ku baax la tey wéetal na askan wi
dinaa la dimbali.
ay dëkkuwaay ñeel waa tugal yiy saytu digg yooyu
ajaatal montar bi.
man naa am dee na.
taaliif wii nag lu ñu barkeel la ci njëlbéen gi ba ca dayo ba.
jaroon na ko.
dama sangu rekk.
yóbbuwoon nan ko.
njabootu manna yi, ñoo daan jaa-ogo yi
ku gëm yàlla ?
gisuma ci ngaañ.
ag dogu dëgg de, dëgër bopp moo koy gunge
rawati na ci wàlli njàggat , fànn ak tabaxiin .
ci waññib 2002 bi, nit ñi ñi ngi tolloon ci 461 159.
tom du yeex a ñëw.
tànn na li mu bëgg.
defal rekk sa liggéey!
waat yi jëm ci xare yu bari ci almaa lañu juge
jaajëf?! naka mu?
yéen jëli ngéen bu baax.
ku nekk ci barab bi?
ay baat aki waxiinsoppi
tom lekk na sama añ.
mi ngi yaatoo 4 km², ci 2005 amoon na 971 way dëkk.

Anta Women TTS

Dataset Description

This is a cleaned version of the Wolof TTS dataset by GalsenAI. We extracted the female voice, denoised it and enhanced it with the Resemble Enhance library. We also cleaned up the annotations by removing special characters, emojis, Arabic and Russian characters. We've corrected a few annotation errors, but there are potentially many more to come. Some lines and audios judged not qualitative enough have been removed from the dataset, reducing its size to 19947 annotated audios.

Speaking time

The overall speaking time is: 18h41mn46s

speaking time before cleaning: 18h 47mn 19s.

The text dataset comes from news websites, Wikipedia and self curated text.

Citation

You can access the project paper at https://arxiv.org/abs/2104.02516.
If you work on the dataset, please cite the authors below.

@dataset{thierno_ibrahima_diop_2021_4498861,
  author       = {Thierno Ibrahima Diop and
                  Demba AW and
                  Ami jaane and
                  Mamadou Badiane},
  title        = {WOLOF TTS(Text To Speech) Data},
  month        = feb,
  year         = 2021,
  publisher    = {Zenodo},
  version      = 1,
  doi          = {10.5281/zenodo.4498861},
  url          = {https://doi.org/10.5281/zenodo.4498861}
}

Acknowledgment

This work was carried out by Derguene and was made possible thanks to computing infrastructure support from Caytu Robotics. Many thanks to them and especially to Abdoulaye Faye for this support.

Downloads last month
121

Models trained or fine-tuned on galsenai/anta_women_tts