Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-generation
transformers
# Stark DialoGPT Model
{"tags": ["conversational"]}
ArJakusz/DialoGPT-small-stark
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArJakusz/DialoGPT-small-starky
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Araby/Arabic-TTS
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Aracatto/Catto
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Araf/Ummah
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AragornII/DialoGPT-small-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
Aran/DialoGPT-medium-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
Aran/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArashEsk95/bert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArashEsk95/bert-base-uncased-finetuned-sst2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArashEsk95/bert-base-uncased-finetuned-stsb
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Aravinth/test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArcQ/gpt-experiments
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Arcanos/1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Archie/myProject
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Rick DialoGPT Model
{"tags": ["conversational"]}
Arcktosh/DialoGPT-small-rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArenaGrenade/char-cnn
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Arghyad/Loki_small
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Cultured Kumiko DialoGPT Model
{"tags": ["conversational"]}
AriakimTaiyo/DialoGPT-cultured-Kumiko
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
null
# Medium Kumiko DialoGPT Model
{"tags": ["conversational"]}
AriakimTaiyo/DialoGPT-medium-Kumiko
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Revised Kumiko DialoGPT Model
{"tags": ["conversational"]}
AriakimTaiyo/DialoGPT-revised-Kumiko
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Kumiko DialoGPT Model
{"tags": ["conversational"]}
AriakimTaiyo/DialoGPT-small-Kumiko
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Rikka DialoGPT Model
{"tags": ["conversational"]}
AriakimTaiyo/DialoGPT-small-Rikka
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
a
{}
AriakimTaiyo/kumiko
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Aries/T5_question_answering
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Aries/T5_question_generation
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Arina/Erine
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArjunKadya/HuggingFace
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Arkadiusz/Test-model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
asaakyan/mbart-poetic-all
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArnaudPannatier/MLPMixer
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Arnold/common_voiceha
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Arnold/wav2vec2-hausa-demo-colab
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-hausa2-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.2032 - Wer: 0.7237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1683 | 12.49 | 400 | 1.0279 | 0.7211 | | 0.0995 | 24.98 | 800 | 1.2032 | 0.7237 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-hausa2-demo-colab", "results": []}]}
Arnold/wav2vec2-hausa2-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-hausa2-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2993 - Wer: 0.4826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.6e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 13 - gradient_accumulation_steps: 3 - total_train_batch_size: 36 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.1549 | 12.5 | 400 | 2.7289 | 1.0 | | 2.0566 | 25.0 | 800 | 0.4582 | 0.6768 | | 0.4423 | 37.5 | 1200 | 0.3037 | 0.5138 | | 0.2991 | 50.0 | 1600 | 0.2993 | 0.4826 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-hausa2-demo-colab", "results": []}]}
Arnold/wav2vec2-large-xlsr-hausa2-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Arnold/wav2vec2-large-xlsr-turkish-demo-colab
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2295 - Accuracy: 0.92 - F1: 0.9202 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8187 | 1.0 | 250 | 0.3137 | 0.902 | 0.8983 | | 0.2514 | 2.0 | 500 | 0.2295 | 0.92 | 0.9202 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.92, "name": "Accuracy"}, {"type": "f1", "value": 0.9201604193183255, "name": "F1"}]}]}]}
Aron/distilbert-base-uncased-finetuned-emotion
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
ArpanZS/debug_squad
null
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArpanZS/search_model
null
[ "joblib", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Arpita/opus-mt-en-ro-finetuned-syn-to-react
null
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Arpita/opus-mt-en-ro-finetuned-synthon-to-reactant
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
ArseniyBolotin/bert-multi-PAD-ner
null
[ "transformers", "pytorch", "jax", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArshdeepSekhon050/DialoGPT-medium-RickAndMorty
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#Okarin Bot
{"tags": ["conversational"]}
ArtemisZealot/DialoGTP-small-Qkarin
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArthurBaia/bert-base-portuguese-cased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArthurcJP/DialoGPT-small-YODA
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
Aruden/DialoGPT-medium-harrypotterall
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
``` from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained("ArvinZhuang/BiTAG-t5-large") tokenizer = AutoTokenizer.from_pretrained("ArvinZhuang/BiTAG-t5-large") text = "abstract: [your abstract]" # use 'title:' as the prefix for title_to_abs task. input_ids = tokenizer.encode(text, return_tensors='pt') outputs = model.generate( input_ids, do_sample=True, max_length=500, top_p=0.9, top_k=20, temperature=1, num_return_sequences=10, ) print("Output:\n" + 100 * '-') for i, output in enumerate(outputs): print("{}: {}".format(i+1, tokenizer.decode(output, skip_special_tokens=True))) ``` GitHub: https://github.com/ArvinZhuang/BiTAG
{"inference": {"parameters": {"do_sample": true, "max_length": 500, "top_p": 0.9, "top_k": 20, "temperature": 1, "num_return_sequences": 10}}, "widget": [{"text": "abstract: We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).", "example_title": "BERT abstract"}]}
ielabgroup/BiTAG-t5-large
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# Model Trained Using AutoNLP - Model: Google's Pegasus (https://huggingface.co/google/pegasus-xsum) - Problem type: Summarization - Model ID: 34558227 - CO2 Emissions (in grams): 137.60574081887984 - Spaces: https://huggingface.co/spaces/TitleGenerators/ArxivTitleGenerator - Dataset: arXiv Dataset (https://www.kaggle.com/Cornell-University/arxiv) - Data subset used: https://huggingface.co/datasets/AryanLala/autonlp-data-Scientific_Title_Generator ## Validation Metrics - Loss: 2.578599214553833 - Rouge1: 44.8482 - Rouge2: 24.4052 - RougeL: 40.1716 - RougeLsum: 40.1396 - Gen Len: 11.4675 ## Social - LinkedIn: https://www.linkedin.com/in/aryanlala/ - Twitter: https://twitter.com/AryanLala20 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2FAryanLala%2Fautonlp-Scientific_Title_Generator-34558227 ```
{"language": "en", "tags": "autonlp", "datasets": ["AryanLala/autonlp-data-Scientific_Title_Generator"], "widget": [{"text": "The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets."}], "co2_eq_emissions": 137.60574081887984}
AryanLala/autonlp-Scientific_Title_Generator-34558227
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autonlp", "en", "dataset:AryanLala/autonlp-data-Scientific_Title_Generator", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AshLukass/AshLukass
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ashagi/Ashvx
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AshiNLP/Bert_model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ashim/dga-transformer
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-parsbert-uncased-finetuned This model is a fine-tuned version of [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2045 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.5596 | 1.0 | 515 | 3.2097 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"]}
Ashkanmh/bert-base-parsbert-uncased-finetuned
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ashl3y/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ashok/my-new-tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AshtonBenson/DialoGPT-small-quentin-coldwater
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AshtonBenson/DialoGPT-small-quentin
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
A discord chatbot trained on the whole LiS script to simulate character speech
{"tags": ["conversational"]}
Aspect11/DialoGPT-Medium-LiSBot
null
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# RinTohsaka bot
{"tags": ["conversational"]}
Asuramaru/DialoGPT-small-rintohsaka
null
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
At3ee/wav2vec2-base-timit-demo-colab
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
GPT-Glacier, a GPT-Neo 125M model finetuned on the Glacier2 Modding Discord server.
{}
Atampy26/GPT-Glacier
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Atarax/rick
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Atchuth/DialoGPT-small-MBOT
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Michael Scott DialoGPT Model
{"tags": ["conversational"]}
Atchuth/DialoGPT-small-MichaelBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Atchuth/MBOT
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Ateeb/EmotionDetector
null
[ "transformers", "pytorch", "funnel", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Ateeb/FullEmotionDetector
null
[ "transformers", "pytorch", "funnel", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
Ateeb/QA
null
[ "transformers", "pytorch", "distilbert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ateeb/SquadQA
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Ateeb/asd
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{"license": "artistic-2.0"}
Atiqah/Atiqah
null
[ "license:artistic-2.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
Placeholder
{}
Atlasky/Turkish-Negator
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Atlasky/turkish-negator-nn
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Augustab/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#MyAwesomeModel
{"tags": ["conversational"]}
Augustvember/WOKKAWOKKA
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Augustvember/WokkaBot
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Augustvember/WokkaBot2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
null
{"tags": ["conversational"]}
Augustvember/WokkaBot3
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Augustvember/WokkaBot4
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Augustvember/WokkaBot5
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Augustvember/WokkaBot6
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Augustvember/WokkaBot7
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Augustvember/WokkaBot8
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Augustvember/WokkaBot9
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Augustvember/WokkaBot99
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Augustvember/WokkaBotF
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#MyAwesomeModel
{"tags": ["conversational"]}
Augustvember/test
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
Augustvember/wokka
null
[ "transformers", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{"tags": ["conversational"]}
Augustvember/wokka2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
null
{"tags": ["conversational"]}
Augustvember/wokka4
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#MyAwesomeModel
{"tags": ["conversational"]}
Augustvember/wokka5
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#MyAwesomeModel
{"tags": ["conversational"]}
Augustvember/wokkabottest2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Augustvember/your-model-name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
https://www.geogebra.org/m/bbuczchu https://www.geogebra.org/m/xwyasqje https://www.geogebra.org/m/mx2cqkwr https://www.geogebra.org/m/tkqqqthm https://www.geogebra.org/m/asdaf9mj https://www.geogebra.org/m/ywuaj7p5 https://www.geogebra.org/m/jkfkayj3 https://www.geogebra.org/m/hptnn7ar https://www.geogebra.org/m/de9cwmrf https://www.geogebra.org/m/yjc5hdep https://www.geogebra.org/m/nm8r56w5 https://www.geogebra.org/m/j7wfcpxj
{}
Aurora/asdawd
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
https://community.afpglobal.org/network/members/profile?UserKey=b0b38adc-86c7-4d30-85c6-ac7d15c5eeb0 https://community.afpglobal.org/network/members/profile?UserKey=f4ddef89-b508-4695-9d1e-3d4d1a583279 https://community.afpglobal.org/network/members/profile?UserKey=36081479-5e7b-41ba-8370-ecf72989107a https://community.afpglobal.org/network/members/profile?UserKey=e1a88332-be7f-4997-af4e-9fcb7bb366da https://community.afpglobal.org/network/members/profile?UserKey=4738b405-2017-4025-9e5f-eadbf7674840 https://community.afpglobal.org/network/members/profile?UserKey=eb96d91c-31ae-46e1-8297-a3c8551f2e6a https://u.mpi.org/network/members/profile?UserKey=9867e2d9-d22a-4dab-8bcf-3da5c2f30745 https://u.mpi.org/network/members/profile?UserKey=5af232f2-a66e-438f-a5ab-9768321f791d https://community.afpglobal.org/network/members/profile?UserKey=481305df-48ea-4c50-bca4-a82008efb427 https://u.mpi.org/network/members/profile?UserKey=039fbb91-52c6-40aa-b58d-432fb4081e32 https://www.geogebra.org/m/jkfkayj3 https://www.geogebra.org/m/hptnn7ar https://www.geogebra.org/m/de9cwmrf https://www.geogebra.org/m/yjc5hdep https://www.geogebra.org/m/nm8r56w5 https://www.geogebra.org/m/j7wfcpxj https://www.geogebra.org/m/bbuczchu https://www.geogebra.org/m/xwyasqje https://www.geogebra.org/m/mx2cqkwr https://www.geogebra.org/m/tkqqqthm https://www.geogebra.org/m/asdaf9mj https://www.geogebra.org/m/ywuaj7p5
{}
Aurora/community.afpglobal
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Blitzo DialoGPT Model
{"tags": ["conversational"]}
AvatarXD/DialoGPT-medium-Blitzo
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
# w2v with news
{}
Aviora/news2vec
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Aviora/phobert-ner
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Eren Yeager DialoGPT Model
{"tags": ["conversational"]}
Awsaf/DialoGPT-medium-eren
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00