Search is not available for this dataset
pipeline_tag
stringclasses 48
values | library_name
stringclasses 205
values | text
stringlengths 0
18.3M
| metadata
stringlengths 2
1.07B
| id
stringlengths 5
122
| last_modified
null | tags
sequencelengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
|
---|---|---|---|---|---|---|---|---|
text-generation | transformers |
# Stark DialoGPT Model | {"tags": ["conversational"]} | ArJakusz/DialoGPT-small-stark | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | {} | ArJakusz/DialoGPT-small-starky | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Araby/Arabic-TTS | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Aracatto/Catto | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Araf/Ummah | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | AragornII/DialoGPT-small-harrypotter | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-generation | transformers |
# Harry Potter DialoGPT Model | {"tags": ["conversational"]} | Aran/DialoGPT-medium-harrypotter | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
text-generation | transformers |
# Harry Potter DialoGPT Model | {"tags": ["conversational"]} | Aran/DialoGPT-small-harrypotter | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | {} | ArashEsk95/bert-base-uncased-finetuned-cola | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | ArashEsk95/bert-base-uncased-finetuned-sst2 | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | ArashEsk95/bert-base-uncased-finetuned-stsb | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Aravinth/test | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | ArcQ/gpt-experiments | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Arcanos/1 | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Archie/myProject | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-generation | transformers | # Rick DialoGPT Model
| {"tags": ["conversational"]} | Arcktosh/DialoGPT-small-rick | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | {} | ArenaGrenade/char-cnn | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Arghyad/Loki_small | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-generation | transformers | # Cultured Kumiko DialoGPT Model | {"tags": ["conversational"]} | AriakimTaiyo/DialoGPT-cultured-Kumiko | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
text-generation | null | # Medium Kumiko DialoGPT Model | {"tags": ["conversational"]} | AriakimTaiyo/DialoGPT-medium-Kumiko | null | [
"conversational",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
text-generation | transformers | # Revised Kumiko DialoGPT Model | {"tags": ["conversational"]} | AriakimTaiyo/DialoGPT-revised-Kumiko | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
text-generation | transformers | # Kumiko DialoGPT Model | {"tags": ["conversational"]} | AriakimTaiyo/DialoGPT-small-Kumiko | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
text-generation | transformers | # Rikka DialoGPT Model | {"tags": ["conversational"]} | AriakimTaiyo/DialoGPT-small-Rikka | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | a | {} | AriakimTaiyo/kumiko | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
text2text-generation | transformers | {} | Aries/T5_question_answering | null | [
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text2text-generation | transformers | {} | Aries/T5_question_generation | null | [
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Arina/Erine | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | ArjunKadya/HuggingFace | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Arkadiusz/Test-model | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | asaakyan/mbart-poetic-all | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | ArnaudPannatier/MLPMixer | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Arnold/common_voiceha | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Arnold/wav2vec2-hausa-demo-colab | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-hausa2-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2032
- Wer: 0.7237
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1683 | 12.49 | 400 | 1.0279 | 0.7211 |
| 0.0995 | 24.98 | 800 | 1.2032 | 0.7237 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-hausa2-demo-colab", "results": []}]} | Arnold/wav2vec2-hausa2-demo-colab | null | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-hausa2-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2993
- Wer: 0.4826
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9.6e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 13
- gradient_accumulation_steps: 3
- total_train_batch_size: 36
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.1549 | 12.5 | 400 | 2.7289 | 1.0 |
| 2.0566 | 25.0 | 800 | 0.4582 | 0.6768 |
| 0.4423 | 37.5 | 1200 | 0.3037 | 0.5138 |
| 0.2991 | 50.0 | 1600 | 0.2993 | 0.4826 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xlsr-hausa2-demo-colab", "results": []}]} | Arnold/wav2vec2-large-xlsr-hausa2-demo-colab | null | [
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | {} | Arnold/wav2vec2-large-xlsr-turkish-demo-colab | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2295
- Accuracy: 0.92
- F1: 0.9202
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8187 | 1.0 | 250 | 0.3137 | 0.902 | 0.8983 |
| 0.2514 | 2.0 | 500 | 0.2295 | 0.92 | 0.9202 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.92, "name": "Accuracy"}, {"type": "f1", "value": 0.9201604193183255, "name": "F1"}]}]}]} | Aron/distilbert-base-uncased-finetuned-emotion | null | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
question-answering | transformers | {} | ArpanZS/debug_squad | null | [
"transformers",
"pytorch",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | ArpanZS/search_model | null | [
"joblib",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text2text-generation | transformers | {} | Arpita/opus-mt-en-ro-finetuned-syn-to-react | null | [
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Arpita/opus-mt-en-ro-finetuned-synthon-to-reactant | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
token-classification | transformers | {} | ArseniyBolotin/bert-multi-PAD-ner | null | [
"transformers",
"pytorch",
"jax",
"bert",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | ArshdeepSekhon050/DialoGPT-medium-RickAndMorty | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-generation | transformers |
#Okarin Bot | {"tags": ["conversational"]} | ArtemisZealot/DialoGTP-small-Qkarin | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | {} | ArthurBaia/bert-base-portuguese-cased-finetuned-squad | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | ArthurcJP/DialoGPT-small-YODA | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-generation | transformers |
# Harry Potter DialoGPT Model | {"tags": ["conversational"]} | Aruden/DialoGPT-medium-harrypotterall | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
text2text-generation | transformers |
```
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("ArvinZhuang/BiTAG-t5-large")
tokenizer = AutoTokenizer.from_pretrained("ArvinZhuang/BiTAG-t5-large")
text = "abstract: [your abstract]" # use 'title:' as the prefix for title_to_abs task.
input_ids = tokenizer.encode(text, return_tensors='pt')
outputs = model.generate(
input_ids,
do_sample=True,
max_length=500,
top_p=0.9,
top_k=20,
temperature=1,
num_return_sequences=10,
)
print("Output:\n" + 100 * '-')
for i, output in enumerate(outputs):
print("{}: {}".format(i+1, tokenizer.decode(output, skip_special_tokens=True)))
```
GitHub: https://github.com/ArvinZhuang/BiTAG | {"inference": {"parameters": {"do_sample": true, "max_length": 500, "top_p": 0.9, "top_k": 20, "temperature": 1, "num_return_sequences": 10}}, "widget": [{"text": "abstract: We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).", "example_title": "BERT abstract"}]} | ielabgroup/BiTAG-t5-large | null | [
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
text2text-generation | transformers |
# Model Trained Using AutoNLP
- Model: Google's Pegasus (https://huggingface.co/google/pegasus-xsum)
- Problem type: Summarization
- Model ID: 34558227
- CO2 Emissions (in grams): 137.60574081887984
- Spaces: https://huggingface.co/spaces/TitleGenerators/ArxivTitleGenerator
- Dataset: arXiv Dataset (https://www.kaggle.com/Cornell-University/arxiv)
- Data subset used: https://huggingface.co/datasets/AryanLala/autonlp-data-Scientific_Title_Generator
## Validation Metrics
- Loss: 2.578599214553833
- Rouge1: 44.8482
- Rouge2: 24.4052
- RougeL: 40.1716
- RougeLsum: 40.1396
- Gen Len: 11.4675
## Social
- LinkedIn: https://www.linkedin.com/in/aryanlala/
- Twitter: https://twitter.com/AryanLala20
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2FAryanLala%2Fautonlp-Scientific_Title_Generator-34558227
``` | {"language": "en", "tags": "autonlp", "datasets": ["AryanLala/autonlp-data-Scientific_Title_Generator"], "widget": [{"text": "The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets."}], "co2_eq_emissions": 137.60574081887984} | AryanLala/autonlp-Scientific_Title_Generator-34558227 | null | [
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"autonlp",
"en",
"dataset:AryanLala/autonlp-data-Scientific_Title_Generator",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | {} | AshLukass/AshLukass | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Ashagi/Ashvx | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | AshiNLP/Bert_model | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Ashim/dga-transformer | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
fill-mask | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-parsbert-uncased-finetuned
This model is a fine-tuned version of [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2045
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.5596 | 1.0 | 515 | 3.2097 |
### Framework versions
- Transformers 4.10.0
- Pytorch 1.9.0+cu102
- Datasets 1.11.0
- Tokenizers 0.10.3
| {"tags": ["generated_from_trainer"]} | Ashkanmh/bert-base-parsbert-uncased-finetuned | null | [
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | {} | Ashl3y/model_name | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Ashok/my-new-tokenizer | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | AshtonBenson/DialoGPT-small-quentin-coldwater | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | AshtonBenson/DialoGPT-small-quentin | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-generation | transformers |
A discord chatbot trained on the whole LiS script to simulate character speech | {"tags": ["conversational"]} | Aspect11/DialoGPT-Medium-LiSBot | null | [
"transformers",
"pytorch",
"safetensors",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
text-generation | transformers | # RinTohsaka bot | {"tags": ["conversational"]} | Asuramaru/DialoGPT-small-rintohsaka | null | [
"transformers",
"pytorch",
"safetensors",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | {} | At3ee/wav2vec2-base-timit-demo-colab | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-generation | transformers | GPT-Glacier, a GPT-Neo 125M model finetuned on the Glacier2 Modding Discord server. | {} | Atampy26/GPT-Glacier | null | [
"transformers",
"pytorch",
"gpt_neo",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | {} | Atarax/rick | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Atchuth/DialoGPT-small-MBOT | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-generation | transformers |
# Michael Scott DialoGPT Model | {"tags": ["conversational"]} | Atchuth/DialoGPT-small-MichaelBot | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | {} | Atchuth/MBOT | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-classification | transformers | {} | Ateeb/EmotionDetector | null | [
"transformers",
"pytorch",
"funnel",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-classification | transformers | {} | Ateeb/FullEmotionDetector | null | [
"transformers",
"pytorch",
"funnel",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
question-answering | transformers | {} | Ateeb/QA | null | [
"transformers",
"pytorch",
"distilbert",
"question-answering",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Ateeb/SquadQA | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Ateeb/asd | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {"license": "artistic-2.0"} | Atiqah/Atiqah | null | [
"license:artistic-2.0",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | Placeholder | {} | Atlasky/Turkish-Negator | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | {} | Atlasky/turkish-negator-nn | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Augustab/distilbert-base-uncased-finetuned-cola | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-generation | transformers | #MyAwesomeModel | {"tags": ["conversational"]} | Augustvember/WOKKAWOKKA | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | {} | Augustvember/WokkaBot | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Augustvember/WokkaBot2 | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-generation | null | {"tags": ["conversational"]} | Augustvember/WokkaBot3 | null | [
"conversational",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Augustvember/WokkaBot4 | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Augustvember/WokkaBot5 | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Augustvember/WokkaBot6 | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Augustvember/WokkaBot7 | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Augustvember/WokkaBot8 | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Augustvember/WokkaBot9 | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Augustvember/WokkaBot99 | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | {} | Augustvember/WokkaBotF | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-generation | transformers | #MyAwesomeModel | {"tags": ["conversational"]} | Augustvember/test | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
text-generation | transformers | {} | Augustvember/wokka | null | [
"transformers",
"gpt2",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-generation | transformers | {"tags": ["conversational"]} | Augustvember/wokka2 | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-generation | null | {"tags": ["conversational"]} | Augustvember/wokka4 | null | [
"conversational",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-generation | transformers | #MyAwesomeModel | {"tags": ["conversational"]} | Augustvember/wokka5 | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
text-generation | transformers | #MyAwesomeModel | {"tags": ["conversational"]} | Augustvember/wokkabottest2 | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | {} | Augustvember/your-model-name | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
null | null | https://www.geogebra.org/m/bbuczchu
https://www.geogebra.org/m/xwyasqje
https://www.geogebra.org/m/mx2cqkwr
https://www.geogebra.org/m/tkqqqthm
https://www.geogebra.org/m/asdaf9mj
https://www.geogebra.org/m/ywuaj7p5
https://www.geogebra.org/m/jkfkayj3
https://www.geogebra.org/m/hptnn7ar
https://www.geogebra.org/m/de9cwmrf
https://www.geogebra.org/m/yjc5hdep
https://www.geogebra.org/m/nm8r56w5
https://www.geogebra.org/m/j7wfcpxj | {} | Aurora/asdawd | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | https://community.afpglobal.org/network/members/profile?UserKey=b0b38adc-86c7-4d30-85c6-ac7d15c5eeb0
https://community.afpglobal.org/network/members/profile?UserKey=f4ddef89-b508-4695-9d1e-3d4d1a583279
https://community.afpglobal.org/network/members/profile?UserKey=36081479-5e7b-41ba-8370-ecf72989107a
https://community.afpglobal.org/network/members/profile?UserKey=e1a88332-be7f-4997-af4e-9fcb7bb366da
https://community.afpglobal.org/network/members/profile?UserKey=4738b405-2017-4025-9e5f-eadbf7674840
https://community.afpglobal.org/network/members/profile?UserKey=eb96d91c-31ae-46e1-8297-a3c8551f2e6a
https://u.mpi.org/network/members/profile?UserKey=9867e2d9-d22a-4dab-8bcf-3da5c2f30745
https://u.mpi.org/network/members/profile?UserKey=5af232f2-a66e-438f-a5ab-9768321f791d
https://community.afpglobal.org/network/members/profile?UserKey=481305df-48ea-4c50-bca4-a82008efb427
https://u.mpi.org/network/members/profile?UserKey=039fbb91-52c6-40aa-b58d-432fb4081e32
https://www.geogebra.org/m/jkfkayj3
https://www.geogebra.org/m/hptnn7ar
https://www.geogebra.org/m/de9cwmrf
https://www.geogebra.org/m/yjc5hdep
https://www.geogebra.org/m/nm8r56w5
https://www.geogebra.org/m/j7wfcpxj
https://www.geogebra.org/m/bbuczchu
https://www.geogebra.org/m/xwyasqje
https://www.geogebra.org/m/mx2cqkwr
https://www.geogebra.org/m/tkqqqthm
https://www.geogebra.org/m/asdaf9mj
https://www.geogebra.org/m/ywuaj7p5 | {} | Aurora/community.afpglobal | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
text-generation | transformers |
# Blitzo DialoGPT Model | {"tags": ["conversational"]} | AvatarXD/DialoGPT-medium-Blitzo | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | # w2v with news | {} | Aviora/news2vec | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
null | null | {} | Aviora/phobert-ner | null | [
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |
|
text-generation | transformers |
# Eren Yeager DialoGPT Model | {"tags": ["conversational"]} | Awsaf/DialoGPT-medium-eren | null | [
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2022-03-02T23:29:04+00:00 |