Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
question-answering
transformers
{}
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1_squad2.0
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1_wikiqa
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_bert_triplet_epochs_1_shard_1_wikiqa_copy
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_hier_quadruplet_0.1_epochs_1_shard_1
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
AnonymousSub/rule_based_roberta_hier_quadruplet_0.1_epochs_1_shard_1_squad2.0
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_1
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_10
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_1_squad2.0
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
AnonymousSub/rule_based_roberta_hier_quadruplet_epochs_1_shard_1_wikiqa
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_hier_triplet_0.1_epochs_1_shard_1
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
AnonymousSub/rule_based_roberta_hier_triplet_0.1_epochs_1_shard_1_squad2.0
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_10
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1_squad2.0
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1_wikiqa
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_hier_triplet_epochs_1_shard_1_wikiqa_copy
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_10
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1_squad2.0
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
AnonymousSub/rule_based_roberta_only_classfn_epochs_1_shard_1_wikiqa
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_1
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_10
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_1_squad2.0
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
AnonymousSub/rule_based_roberta_only_classfn_twostage_epochs_1_shard_1_wikiqa
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_10
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1_squad2.0
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
AnonymousSub/rule_based_roberta_twostage_quadruplet_epochs_1_shard_1_wikiqa
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_10
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1_squad2.0
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
AnonymousSub/rule_based_roberta_twostagequadruplet_hier_epochs_1_shard_1_wikiqa
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_1
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_10
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_1_squad2.0
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
AnonymousSub/rule_based_roberta_twostagetriplet_epochs_1_shard_1_wikiqa
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_10
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_squad2.0
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
AnonymousSub/rule_based_roberta_twostagetriplet_hier_epochs_1_shard_1_wikiqa
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_twostage_quadruplet_epochs_1_shard_1
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
AnonymousSub/rule_based_twostage_quadruplet_epochs_1_shard_1_wikiqa
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_twostagequadruplet_hier_epochs_1_shard_1
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
AnonymousSub/rule_based_twostagequadruplet_hier_epochs_1_shard_1_wikiqa
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_twostagetriplet_epochs_1_shard_1
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
AnonymousSub/rule_based_twostagetriplet_epochs_1_shard_1_wikiqa
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/rule_based_twostagetriplet_hier_epochs_1_shard_1
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
AnonymousSub/rule_based_twostagetriplet_hier_epochs_1_shard_1_wikiqa
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/specter-bert-model
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/specter-bert-model_copy
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
AnonymousSub/specter-bert-model_copy_wikiqa
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
AnonymousSub/specter-bert-model_squad2.0
null
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/specter-emanuals-model
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/unsup-consert-base
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/unsup-consert-base_copy
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
AnonymousSub/unsup-consert-base_copy_wikiqa
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
AnonymousSub/unsup-consert-base_squad2.0
null
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/unsup-consert-emanuals
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/unsup-consert-papers-bert
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
AnonymousSub/unsup-consert-papers
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AnonymousSubmission/pretrained-model-1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Anonymreign/savagebeta
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 20384195 - CO2 Emissions (in grams): 4.214012748213151 ## Validation Metrics - Loss: 1.0120062828063965 - Rouge1: 41.1808 - Rouge2: 26.2564 - RougeL: 31.3106 - RougeLsum: 38.9991 - Gen Len: 58.45 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2FAnorak%2Fautonlp-Niravana-test2-20384195 ```
{"language": "unk", "tags": "autonlp", "datasets": ["Anorak/autonlp-data-Niravana-test2"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 4.214012748213151}
Anorak/nirvana
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autonlp", "unk", "dataset:Anorak/autonlp-data-Niravana-test2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Rick Sanchez DialoGPT Model
{"tags": ["conversational"]}
AnthonyNelson/DialoGPT-small-ricksanchez
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Anthos23/FS-distilroberta-fine-tuned
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Anthos23/distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0662 - Validation Loss: 0.2623 - Train Accuracy: 0.9083 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 21045, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.2101 | 0.2373 | 0.9083 | 0 | | 0.1065 | 0.2645 | 0.9060 | 1 | | 0.0662 | 0.2623 | 0.9083 | 2 | ### Framework versions - Transformers 4.17.0.dev0 - TensorFlow 2.5.0 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "Anthos23/distilbert-base-uncased-finetuned-sst2", "results": []}]}
Anthos23/distilbert-base-uncased-finetuned-sst2
null
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Anthos23/my-awesome-model
null
[ "transformers", "pytorch", "tf", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Anthos23/sentiment-roberta-large-english-finetuned-sentiment-analysis
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Anthos23/test_trainer
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
AntonClaesson/finetuning_test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
AntonClaesson/movie-plot-generator
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Antony/mint_model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Anubhav23/IndianlegalBert
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Anubhav23/indianlegal
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Anubhav23/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Anupam/QuestionClassifier
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Jordan DialoGPT Model
{"tags": ["conversational"]}
Apisate/DialoGPT-small-jordan
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
Apisate/Discord-Ai-Bot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Aplinxy9plin/toxic-detection-rus
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: - Marketing - Search Engine Optimization - Topic generation etc. - Fine tuning of topic modeling models
{"language": "en", "tags": ["keytotext", "k2t", "Keywords to Sentences"], "thumbnail": "Keywords to Sentences"}
Apoorva/k2t-test
null
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t", "Keywords to Sentences", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Appolo/TestModel
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
ArBert/albert-base-v2-finetuned-ner-agglo-twitter
null
[ "transformers", "pytorch", "tensorboard", "albert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
ArBert/albert-base-v2-finetuned-ner-agglo
null
[ "transformers", "pytorch", "tensorboard", "albert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
ArBert/albert-base-v2-finetuned-ner-gmm-twitter
null
[ "transformers", "pytorch", "tensorboard", "albert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
ArBert/albert-base-v2-finetuned-ner-gmm
null
[ "transformers", "pytorch", "tensorboard", "albert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
ArBert/albert-base-v2-finetuned-ner-kmeans-twitter
null
[ "transformers", "pytorch", "tensorboard", "albert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
ArBert/albert-base-v2-finetuned-ner-kmeans
null
[ "transformers", "pytorch", "tensorboard", "albert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-ner This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0700 - Precision: 0.9301 - Recall: 0.9376 - F1: 0.9338 - Accuracy: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.096 | 1.0 | 1756 | 0.0752 | 0.9163 | 0.9201 | 0.9182 | 0.9811 | | 0.0481 | 2.0 | 3512 | 0.0761 | 0.9169 | 0.9293 | 0.9231 | 0.9830 | | 0.0251 | 3.0 | 5268 | 0.0700 | 0.9301 | 0.9376 | 0.9338 | 0.9852 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "albert-base-v2-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9301181102362205, "name": "Precision"}, {"type": "recall", "value": 0.9376033513394334, "name": "Recall"}, {"type": "f1", "value": 0.9338457315399397, "name": "F1"}, {"type": "accuracy", "value": 0.9851613086447802, "name": "Accuracy"}]}]}]}
ArBert/albert-base-v2-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "albert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArBert/bert-base-uncased-finetuned-ner-agglo
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArBert/bert-base-uncased-finetuned-ner-gmm
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArBert/bert-base-uncased-finetuned-ner-kmeans-twitter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-ner-kmeans This model is a fine-tuned version of [ArBert/bert-base-uncased-finetuned-ner](https://huggingface.co/ArBert/bert-base-uncased-finetuned-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1169 - Precision: 0.9084 - Recall: 0.9245 - F1: 0.9164 - Accuracy: 0.9792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.036 | 1.0 | 1123 | 0.1010 | 0.9086 | 0.9117 | 0.9101 | 0.9779 | | 0.0214 | 2.0 | 2246 | 0.1094 | 0.9033 | 0.9199 | 0.9115 | 0.9784 | | 0.014 | 3.0 | 3369 | 0.1169 | 0.9084 | 0.9245 | 0.9164 | 0.9792 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-uncased-finetuned-ner-kmeans", "results": []}]}
ArBert/bert-base-uncased-finetuned-ner-kmeans
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0905 - Precision: 0.9068 - Recall: 0.9200 - F1: 0.9133 - Accuracy: 0.9787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1266 | 1.0 | 1123 | 0.0952 | 0.8939 | 0.8869 | 0.8904 | 0.9742 | | 0.0741 | 2.0 | 2246 | 0.0866 | 0.8936 | 0.9247 | 0.9089 | 0.9774 | | 0.0496 | 3.0 | 3369 | 0.0905 | 0.9068 | 0.9200 | 0.9133 | 0.9787 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-base-uncased-finetuned-ner", "results": []}]}
ArBert/bert-base-uncased-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-ner-agglo-twitter This model is a fine-tuned version of [ArBert/roberta-base-finetuned-ner](https://huggingface.co/ArBert/roberta-base-finetuned-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6645 - Precision: 0.6885 - Recall: 0.7665 - F1: 0.7254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 245 | 0.2820 | 0.6027 | 0.7543 | 0.6700 | | No log | 2.0 | 490 | 0.2744 | 0.6308 | 0.7864 | 0.7000 | | 0.2301 | 3.0 | 735 | 0.2788 | 0.6433 | 0.7637 | 0.6984 | | 0.2301 | 4.0 | 980 | 0.3255 | 0.6834 | 0.7221 | 0.7022 | | 0.1153 | 5.0 | 1225 | 0.3453 | 0.6686 | 0.7439 | 0.7043 | | 0.1153 | 6.0 | 1470 | 0.3988 | 0.6797 | 0.7420 | 0.7094 | | 0.0617 | 7.0 | 1715 | 0.4711 | 0.6702 | 0.7259 | 0.6969 | | 0.0617 | 8.0 | 1960 | 0.4904 | 0.6904 | 0.7505 | 0.7192 | | 0.0328 | 9.0 | 2205 | 0.5088 | 0.6591 | 0.7713 | 0.7108 | | 0.0328 | 10.0 | 2450 | 0.5709 | 0.6468 | 0.7788 | 0.7067 | | 0.019 | 11.0 | 2695 | 0.5570 | 0.6642 | 0.7533 | 0.7059 | | 0.019 | 12.0 | 2940 | 0.5574 | 0.6899 | 0.7656 | 0.7258 | | 0.0131 | 13.0 | 3185 | 0.5858 | 0.6952 | 0.7609 | 0.7265 | | 0.0131 | 14.0 | 3430 | 0.6239 | 0.6556 | 0.7826 | 0.7135 | | 0.0074 | 15.0 | 3675 | 0.5931 | 0.6825 | 0.7599 | 0.7191 | | 0.0074 | 16.0 | 3920 | 0.6364 | 0.6785 | 0.7580 | 0.7161 | | 0.005 | 17.0 | 4165 | 0.6437 | 0.6855 | 0.7580 | 0.7199 | | 0.005 | 18.0 | 4410 | 0.6610 | 0.6779 | 0.7599 | 0.7166 | | 0.0029 | 19.0 | 4655 | 0.6625 | 0.6853 | 0.7656 | 0.7232 | | 0.0029 | 20.0 | 4900 | 0.6645 | 0.6885 | 0.7665 | 0.7254 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1"], "model-index": [{"name": "roberta-base-finetuned-ner-agglo-twitter", "results": []}]}
ArBert/roberta-base-finetuned-ner-agglo-twitter
null
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArBert/roberta-base-finetuned-ner-agglo
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArBert/roberta-base-finetuned-ner-gmm-twitter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
ArBert/roberta-base-finetuned-ner-gmm
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-ner-kmeans-twitter This model is a fine-tuned version of [ArBert/roberta-base-finetuned-ner](https://huggingface.co/ArBert/roberta-base-finetuned-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6645 - Precision: 0.6885 - Recall: 0.7665 - F1: 0.7254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 245 | 0.2820 | 0.6027 | 0.7543 | 0.6700 | | No log | 2.0 | 490 | 0.2744 | 0.6308 | 0.7864 | 0.7000 | | 0.2301 | 3.0 | 735 | 0.2788 | 0.6433 | 0.7637 | 0.6984 | | 0.2301 | 4.0 | 980 | 0.3255 | 0.6834 | 0.7221 | 0.7022 | | 0.1153 | 5.0 | 1225 | 0.3453 | 0.6686 | 0.7439 | 0.7043 | | 0.1153 | 6.0 | 1470 | 0.3988 | 0.6797 | 0.7420 | 0.7094 | | 0.0617 | 7.0 | 1715 | 0.4711 | 0.6702 | 0.7259 | 0.6969 | | 0.0617 | 8.0 | 1960 | 0.4904 | 0.6904 | 0.7505 | 0.7192 | | 0.0328 | 9.0 | 2205 | 0.5088 | 0.6591 | 0.7713 | 0.7108 | | 0.0328 | 10.0 | 2450 | 0.5709 | 0.6468 | 0.7788 | 0.7067 | | 0.019 | 11.0 | 2695 | 0.5570 | 0.6642 | 0.7533 | 0.7059 | | 0.019 | 12.0 | 2940 | 0.5574 | 0.6899 | 0.7656 | 0.7258 | | 0.0131 | 13.0 | 3185 | 0.5858 | 0.6952 | 0.7609 | 0.7265 | | 0.0131 | 14.0 | 3430 | 0.6239 | 0.6556 | 0.7826 | 0.7135 | | 0.0074 | 15.0 | 3675 | 0.5931 | 0.6825 | 0.7599 | 0.7191 | | 0.0074 | 16.0 | 3920 | 0.6364 | 0.6785 | 0.7580 | 0.7161 | | 0.005 | 17.0 | 4165 | 0.6437 | 0.6855 | 0.7580 | 0.7199 | | 0.005 | 18.0 | 4410 | 0.6610 | 0.6779 | 0.7599 | 0.7166 | | 0.0029 | 19.0 | 4655 | 0.6625 | 0.6853 | 0.7656 | 0.7232 | | 0.0029 | 20.0 | 4900 | 0.6645 | 0.6885 | 0.7665 | 0.7254 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1"], "model-index": [{"name": "roberta-base-finetuned-ner-kmeans-twitter", "results": []}]}
ArBert/roberta-base-finetuned-ner-kmeans-twitter
null
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-ner-kmeans This model is a fine-tuned version of [ArBert/roberta-base-finetuned-ner](https://huggingface.co/ArBert/roberta-base-finetuned-ner) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0592 - Precision: 0.9559 - Recall: 0.9615 - F1: 0.9587 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.0248 | 1.0 | 878 | 0.0609 | 0.9507 | 0.9561 | 0.9534 | | 0.0163 | 2.0 | 1756 | 0.0640 | 0.9515 | 0.9578 | 0.9546 | | 0.0089 | 3.0 | 2634 | 0.0592 | 0.9559 | 0.9615 | 0.9587 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1"], "model-index": [{"name": "roberta-base-finetuned-ner-kmeans", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.955868544600939, "name": "Precision"}, {"type": "recall", "value": 0.9614658103513412, "name": "Recall"}, {"type": "f1", "value": 0.9586590074394953, "name": "F1"}]}]}]}
ArBert/roberta-base-finetuned-ner-kmeans
null
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-ner This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0738 - Precision: 0.9232 - Recall: 0.9437 - F1: 0.9333 - Accuracy: 0.9825 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1397 | 1.0 | 1368 | 0.0957 | 0.9141 | 0.9048 | 0.9094 | 0.9753 | | 0.0793 | 2.0 | 2736 | 0.0728 | 0.9274 | 0.9324 | 0.9299 | 0.9811 | | 0.0499 | 3.0 | 4104 | 0.0738 | 0.9232 | 0.9437 | 0.9333 | 0.9825 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "roberta-base-finetuned-ner", "results": []}]}
ArBert/roberta-base-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00