metadata
dataset_info:
features:
- name: tag_string
dtype: string
- name: tag_type
dtype: string
- name: tag_count
dtype: int64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 31272441
num_examples: 686568
download_size: 14810544
dataset_size: 31272441
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataproc5/metrics-danbooru2025-alltime-tag-counts
Dataset Overview
tag_count
provides aggregated tag usage statistics from the Danbooru2025 dataset. Each entry corresponds to a specific tag's usage count in all time.
import unibox as ub
df = ub.loads("hf://dataproc5/metrics-danbooru2025-monthly-tag-counts").to_pandas()
alltime_tag_counts = df.groupby(["tag_string", "tag_type"], as_index=False)["tag_count"].sum()
alltime_tag_counts = alltime_tag_counts.sort_values("tag_count", ascending=False)
ub.saves(alltime_tag_counts, "hf://dataproc5/metrics-danbooru2025-alltime-tag-counts", private=False)
Usage
Some example use cases of this metrics includes:
- finding out the top-occuring character / artist tags for targeted finetunes
- creating tag-balanced datasets
- use as a weighted random tags generator
Columns
tag_string
: The text of the tag (e.g., "landscape").tag_count
: The total occurrences of the tag in the entire Danbooru datasettag_type
: The category of the tag:"artist"
: Artist names."character"
: Character names."copyright"
: Copyrighted works or IPs."general"
: General descriptive tags."meta"
: Meta information tags.
Source Data
- Derived from Danbooru2025 image metadata.
- Tags are extracted from columns:
tag_string_artist
,tag_string_character
,tag_string_copyright
,tag_string_general
, andtag_string_meta
.
Visualization
Danbooru tag counts are highly unbalanced. using df["tag_count"].hist()
barely gets anything. Here's a log-scaled vis for reference:
import matplotlib.pyplot as plt
# Plot histogram with log scale on the y-axis
plt.figure(figsize=(10, 6))
plt.hist(alltime_tag_counts["tag_count"], bins=100, log=True, edgecolor='black')
plt.title("Histogram of All-Time Tag Counts (Log Scale)")
plt.xlabel("Tag Count")
plt.ylabel("Log Frequency")
plt.grid(True)
plt.show()